找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combating Online Hostile Posts in Regional Languages during Emergency Situation; First International Tanmoy Chakraborty,Kai Shu,Md Shad Ak

[復(fù)制鏈接]
樓主: 添加劑
31#
發(fā)表于 2025-3-27 00:44:42 | 只看該作者
Fake News Detection System Using XLNet Model with Topic Distributions: CONSTRAINT@AAAI2021 Shared Tstributions from Latent Dirichlet Allocation (LDA) with contextualized representations from XLNet. We also compared our method with existing baselines to show that XLNet . Topic Distributions outperforms other approaches by attaining an F1-score of 0.967.
32#
發(fā)表于 2025-3-27 03:08:06 | 只看該作者
33#
發(fā)表于 2025-3-27 08:06:57 | 只看該作者
34#
發(fā)表于 2025-3-27 12:31:16 | 只看該作者
Conference proceedings 2021rs presented were thoroughly reviewed and selected from 62 qualified submissions. The papers present? interdisciplinary approaches on?multilingual social media analytics and non-conventional ways of combating online hostile posts..
35#
發(fā)表于 2025-3-27 16:24:37 | 只看該作者
1865-0929 short papers presented were thoroughly reviewed and selected from 62 qualified submissions. The papers present? interdisciplinary approaches on?multilingual social media analytics and non-conventional ways of combating online hostile posts..978-3-030-73695-8978-3-030-73696-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
36#
發(fā)表于 2025-3-27 17:48:36 | 只看該作者
Application to the differential games,lowing this, we propose the use of fine-tuning Distilled Bert using both OLID and an additional hate speech and offensive language dataset. Then, we evaluate our model on the test set, yielding a macro f1 score of 78.8.
37#
發(fā)表于 2025-3-28 00:43:18 | 只看該作者
Algebraic lyapunov and riccati equations,set with four machine learning baselines - Decision Tree, Logistic Regression, Gradient Boost, and Support Vector Machine (SVM). We obtain the best performance of 93.32% F1-score with SVM on the test set. The data and code is available at: ..
38#
發(fā)表于 2025-3-28 02:17:05 | 只看該作者
Rock failure under imposed load over caves,amework modeling those features by using BERT language model and external sources, namely Simple English Wikipedia and source reliability tags. The conducted experiments on CONSTRAINT datasets demonstrated the benefit of integrating these features for the early detection of fake news in the healthcare domain.
39#
發(fā)表于 2025-3-28 06:22:38 | 只看該作者
Identifying Offensive Content in Social Media Posts,lowing this, we propose the use of fine-tuning Distilled Bert using both OLID and an additional hate speech and offensive language dataset. Then, we evaluate our model on the test set, yielding a macro f1 score of 78.8.
40#
發(fā)表于 2025-3-28 12:35:02 | 只看該作者
Fighting an Infodemic: COVID-19 Fake News Dataset,set with four machine learning baselines - Decision Tree, Logistic Regression, Gradient Boost, and Support Vector Machine (SVM). We obtain the best performance of 93.32% F1-score with SVM on the test set. The data and code is available at: ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布尔津县| 浏阳市| 张家界市| 长沙市| 克什克腾旗| 镇沅| 玉门市| 长沙县| 上犹县| 色达县| 九台市| 宁陵县| 长宁区| 巴林右旗| 巧家县| 皋兰县| 株洲县| 富锦市| 米泉市| 江津市| 凭祥市| 屯留县| 平原县| 凤凰县| 沾益县| 岳普湖县| 正镶白旗| 郧西县| 浑源县| 上栗县| 洪洞县| 彝良县| 库尔勒市| 石首市| 古浪县| 彩票| 油尖旺区| 中山市| 安吉县| 巧家县| 阳曲县|