找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Colloquium De Giorgi 2009; Umberto Zannier Conference proceedings 2012 Scuola Normale Superiore Pisa 2012

[復(fù)制鏈接]
樓主: Clientele
11#
發(fā)表于 2025-3-23 13:46:56 | 只看該作者
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real variable.
12#
發(fā)表于 2025-3-23 15:58:19 | 只看該作者
Colloquium De Giorgi 2009978-88-7642-387-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
13#
發(fā)表于 2025-3-23 19:25:16 | 只看該作者
Erratum to: Blockverbindungen und Sperren,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if . is a connected Lie group.
14#
發(fā)表于 2025-3-24 00:08:56 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:56 | 只看該作者
,Isomorphisms of the Figà-Talamanca-Herz algebras ,,(,) for connected Lie groups ,,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if
16#
發(fā)表于 2025-3-24 06:50:29 | 只看該作者
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real v
17#
發(fā)表于 2025-3-24 12:24:02 | 只看該作者
,Leibniz’ conjecture, periods & motives, historical introduction to periods with the aim to demonstrate how a very nice and deep theory evolved during 3 centuries with three themes: numbers (Euler, Leibniz, Hermite, Lindemann, Siegel, Gelfond, Schneider, Baker), Hodge theory (Hodge, De Rham, Grothendieck, Griffiths, Deligne) and motives (
18#
發(fā)表于 2025-3-24 18:45:20 | 只看該作者
19#
發(fā)表于 2025-3-24 21:05:29 | 只看該作者
,Leibniz’ conjecture, periods & motives,Deligne, Nori). One of our main intends is to discuss then how to possibly bring these themes together and to show how modern transcendence theory can solve questions which arise at the interfaces between number theory, global analysis, algebraic geometry and arithmetic algebraic geometry.
20#
發(fā)表于 2025-3-25 01:38:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
班玛县| 黔南| 砀山县| 佛山市| 隆化县| 水城县| 深水埗区| 永昌县| 陆川县| 中江县| 巴马| 定边县| 罗甸县| 合山市| 墨竹工卡县| 三门县| 都兰县| 茂名市| 北安市| 桃江县| 绍兴市| 铁岭市| 满洲里市| 石屏县| 四子王旗| 古浪县| 蒙自县| 英德市| 宜阳县| 定西市| 仲巴县| 青岛市| 叙永县| 潞城市| 宾川县| 进贤县| 阳城县| 西乌珠穆沁旗| 弋阳县| 抚州市| 青岛市|