找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Collected Papers; Volume I 1955-1966 Bertram Kostant,Anthony Joseph,Shrawan Kumar,Michè Book 2009 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Johnson
41#
發(fā)表于 2025-3-28 15:10:52 | 只看該作者
Holonomy and the Lie Algebra of Infinitesimal Motions of A Riemannian Manifold,nishes at a point . ? . then . induces, in a natural way, an endomorphism .. of the tangent space .. at .. In fact if . ? .. and . is any vector field whose value at . is ., then define ... = [., .].. It is not hard to see that [., .]. does not depend on . so long as the value of . at . is ..
42#
發(fā)表于 2025-3-28 20:39:38 | 只看該作者
43#
發(fā)表于 2025-3-28 23:46:37 | 只看該作者
On Holonomy and Homogeneous Spaces,ral than the others. We refer to the connections which K. Nomizu in [4] calls canonical affine connections of the first kind. When . is a compact connected Lie group and . a closed subgroup we called an invariant Riemannian metric on ., natural (in [2]) when it induced such a connection.
44#
發(fā)表于 2025-3-29 04:11:51 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:15 | 只看該作者
Eigenvalues of a Laplacian and Commutative Lie Subalgebras,ued left invariant differential forms may be naturally identified with the exterior algebra ?.. Also, one knows then that ?. is stable under the Laplacian defined with respect to the canonical Riemannian metric on ..
46#
發(fā)表于 2025-3-29 12:45:47 | 只看該作者
47#
發(fā)表于 2025-3-29 16:44:10 | 只看該作者
48#
發(fā)表于 2025-3-29 22:52:20 | 只看該作者
49#
發(fā)表于 2025-3-30 00:13:39 | 只看該作者
50#
發(fā)表于 2025-3-30 06:12:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
古田县| 海南省| 兴业县| 陵川县| 监利县| 公主岭市| 宁都县| 宝兴县| 山西省| 宜川县| 太和县| 彭阳县| 宜兴市| 通城县| 青浦区| 台山市| 廊坊市| 修文县| 华坪县| 吉木萨尔县| 茂名市| 澳门| 阳曲县| 柳州市| 通山县| 璧山县| 阜城县| 新沂市| 高平市| 梁山县| 榆中县| 沿河| 泰和县| 融水| 乌兰察布市| 赤峰市| 焦作市| 正安县| 洪湖市| 老河口市| 海晏县|