找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Collected Papers; Volume I 1955-1966 Bertram Kostant,Anthony Joseph,Shrawan Kumar,Michè Book 2009 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Johnson
21#
發(fā)表于 2025-3-25 07:23:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:08:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:25:30 | 只看該作者
On Differential Geometry and Homogeneous Spaces II,We retain the notation of the preceding paper.. We will say that . is effective relative to . if . contains no ideal of ..
24#
發(fā)表于 2025-3-25 19:29:51 | 只看該作者
A Characterization of the Classical Groups,By one method of classification there are three types of (complex, connected) classical groups, (a) .(.), (b) .(.), and (c) .(.). So designated, each type is given as a specific group of matrices. It is perhaps neater (and for us more pertinent) to describe these groups by means of the special linear representation which each type admits.
25#
發(fā)表于 2025-3-25 21:52:16 | 只看該作者
The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group,Let . be a complex simple Lie algebra and let . be the adjoint group of g. It is by now classical that the Poincaré polynomial ..(.) of . factors into the form
26#
發(fā)表于 2025-3-26 02:42:33 | 只看該作者
27#
發(fā)表于 2025-3-26 06:19:36 | 只看該作者
Lie Group Representations On Polynomial Rings,Let . be a group of linear transformations on a finite dimensional real or complex vector space .. Assume . is completely reducible as a .-module. Let . be the ring of all complex-valued polynomials on ., regarded as a .-module in the obvious way, and let . ? . be the subring of all .-invariant polynomials on ..
28#
發(fā)表于 2025-3-26 12:09:30 | 只看該作者
Lie Group Representations on Polynomial Rings,Let . be a group of linear transformations on a finite dimensional real or complex vector space .. Assume . is completely reducible as a .-module. Let . be the ring of all complex-valued polynomials on ., regarded as a .-module in the obvious way, and let . ? . be the sub-ring of all .-invariant polynomials on ..
29#
發(fā)表于 2025-3-26 15:21:14 | 只看該作者
Lie Algebra Cohomology and Generalized Schubert Cells,This paper is referred to as Part II. Part I is [4], The numerical I used as a reference will refer to that paper. A third and final part, . is also planned.
30#
發(fā)表于 2025-3-26 19:16:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浙江省| 乐昌市| 新龙县| 外汇| 巴林左旗| 西峡县| 永济市| 兴义市| 新巴尔虎左旗| 布拖县| 保康县| 伊宁市| 遂溪县| 文成县| 盐亭县| 灵石县| 平武县| 雷州市| 惠州市| 娄底市| 鲜城| 修水县| 沙坪坝区| 朔州市| 鄄城县| 常德市| 乌鲁木齐县| 黄骅市| 勃利县| 彭泽县| 彰武县| 永安市| 登封市| 盐城市| 钦州市| 莱芜市| 普陀区| 金溪县| 麻城市| 阳泉市| 嘉荫县|