找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Groups; Kenneth S. Brown Textbook 1982 Springer-Verlag New York Inc. 1982 Abelian group.Cohomology.Groups.Gruppe (Math.).Koh

[復(fù)制鏈接]
查看: 24371|回復(fù): 45
樓主
發(fā)表于 2025-3-21 19:48:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cohomology of Groups
編輯Kenneth S. Brown
視頻videohttp://file.papertrans.cn/230/229263/229263.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Cohomology of Groups;  Kenneth S. Brown Textbook 1982 Springer-Verlag New York Inc. 1982 Abelian group.Cohomology.Groups.Gruppe (Math.).Koh
描述As a second year graduate textbook, .Cohomology of Groups. introduces students to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology. The basics of the subject are given (along with exercises) before the author discusses more specialized topics.
出版日期Textbook 1982
關(guān)鍵詞Abelian group; Cohomology; Groups; Gruppe (Math; ); Kohomologie
版次1
doihttps://doi.org/10.1007/978-1-4684-9327-6
isbn_ebook978-1-4684-9327-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag New York Inc. 1982
The information of publication is updating

書目名稱Cohomology of Groups影響因子(影響力)




書目名稱Cohomology of Groups影響因子(影響力)學(xué)科排名




書目名稱Cohomology of Groups網(wǎng)絡(luò)公開度




書目名稱Cohomology of Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cohomology of Groups被引頻次




書目名稱Cohomology of Groups被引頻次學(xué)科排名




書目名稱Cohomology of Groups年度引用




書目名稱Cohomology of Groups年度引用學(xué)科排名




書目名稱Cohomology of Groups讀者反饋




書目名稱Cohomology of Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:47 | 只看該作者
Cohomology Theory of Finite Groups, .-modules (namely, the induced modules . ? .) with the following properties: (a) Every . ∈ . is acyclic for both homology and cohomology. (b) For every .-module . there is a module . ∈ . such that . is a quotient of . and . can be embedded in ..
板凳
發(fā)表于 2025-3-22 01:47:48 | 只看該作者
Textbook 1982pology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology. The basics of the subject are given (along with exercises) before the author discusses more specialized topics.
地板
發(fā)表于 2025-3-22 07:09:01 | 只看該作者
5#
發(fā)表于 2025-3-22 10:07:06 | 只看該作者
6#
發(fā)表于 2025-3-22 16:39:50 | 只看該作者
Some Homological Algebra,ed algebraic topology. The reader is advised to skip this section (or skim it lightly) and refer back to it as necessary. We will omit some of the proofs; these are either easy or else can be found in standard texts, such as Dold [1972], Spanier [1966], or MacLane [1963].
7#
發(fā)表于 2025-3-22 18:11:40 | 只看該作者
Products,.′. Note that if . is projective over . and .′ is projective over .′ then . ? .′ is projective over .[. × .′]. In fact, it suffices to verify this in the case where . = . and .′ = .′, in which case the assertion follows from the obvious isomorphism . ? .′ ≈ .[. × .′].
8#
發(fā)表于 2025-3-22 23:19:38 | 只看該作者
9#
發(fā)表于 2025-3-23 05:23:13 | 只看該作者
10#
發(fā)表于 2025-3-23 09:17:11 | 只看該作者
Finiteness Conditions,take the topological point of view, then we can compute .(.) and .*(., .) in terms of an arbitrary K(G, 1)-complex .. Since we have this freedom of choice, it is reasonable to try to choose . (or . to be as “small” as possible, and this leads to various finiteness conditions on ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岢岚县| 思南县| 琼中| 定边县| 瑞金市| 育儿| 板桥市| 丰宁| 丰镇市| 康保县| 牙克石市| 思茅市| 永昌县| 武陟县| 边坝县| 三都| 黎城县| 临洮县| 伊宁县| 昭平县| 南昌县| 酒泉市| 依兰县| 桃园市| 黔东| 个旧市| 巩留县| 英德市| 楚雄市| 毕节市| 九寨沟县| 衡南县| 金沙县| 凤凰县| 岑巩县| 鲜城| 德昌县| 太仓市| 昌乐县| 岳阳市| 舒兰市|