找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Methods in Homotopy Theory; Barcelona Conference Jaume Aguadé,Carles Broto,Carles Casacuberta Conference proceedings 2001 Bir

[復(fù)制鏈接]
查看: 23456|回復(fù): 60
樓主
發(fā)表于 2025-3-21 20:08:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cohomological Methods in Homotopy Theory
副標題Barcelona Conference
編輯Jaume Aguadé,Carles Broto,Carles Casacuberta
視頻videohttp://file.papertrans.cn/230/229245/229245.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Cohomological Methods in Homotopy Theory; Barcelona Conference Jaume Aguadé,Carles Broto,Carles Casacuberta Conference proceedings 2001 Bir
出版日期Conference proceedings 2001
關(guān)鍵詞Algebraic topology; Homotopy; K-theory; cohomology; group theory; homology; homotopy theory
版次1
doihttps://doi.org/10.1007/978-3-0348-8312-2
isbn_softcover978-3-0348-9513-2
isbn_ebook978-3-0348-8312-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Verlag 2001
The information of publication is updating

書目名稱Cohomological Methods in Homotopy Theory影響因子(影響力)




書目名稱Cohomological Methods in Homotopy Theory影響因子(影響力)學科排名




書目名稱Cohomological Methods in Homotopy Theory網(wǎng)絡(luò)公開度




書目名稱Cohomological Methods in Homotopy Theory網(wǎng)絡(luò)公開度學科排名




書目名稱Cohomological Methods in Homotopy Theory被引頻次




書目名稱Cohomological Methods in Homotopy Theory被引頻次學科排名




書目名稱Cohomological Methods in Homotopy Theory年度引用




書目名稱Cohomological Methods in Homotopy Theory年度引用學科排名




書目名稱Cohomological Methods in Homotopy Theory讀者反饋




書目名稱Cohomological Methods in Homotopy Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:45:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:11:33 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:41 | 只看該作者
G. J. Dockray,E. R. Forster,S. M. Louisomology, (3) Hopf algebras given by loop space homology, (4) natural groups attached to connected Hopf algebras, (5) analogues of Artin’s (pure) braid group, (6) Alexander’s construction of knots arising from loop spaces, and (7) Vassiliev’s invariants of braids.
5#
發(fā)表于 2025-3-22 08:47:31 | 只看該作者
6#
發(fā)表于 2025-3-22 16:49:52 | 只看該作者
7#
發(fā)表于 2025-3-22 17:50:24 | 只看該作者
Drug induced sensory neuropathiese ho-motopy theory of Hovey—Palmieri—Strickland [32]. Much of the work consists of collecting known results in a single language and a single framework. The very effortlessness of the process is an effective advertisement for the language, and a call for further investigation of other instances. The
8#
發(fā)表于 2025-3-23 01:08:57 | 只看該作者
J. D. Stewart,P. A. Low,R. D. Fealey spectrum, and that the homotopy colimit of a certain sequence .(.)→ . is an infinite wedge of stable summands of .(.,1)’s, where V denotes an elementary abelian 2 group. In particular, when one starts with .(1), one gets .(./2, 1) = ..as one of the summands..I discuss a generalization of this pictu
9#
發(fā)表于 2025-3-23 04:56:29 | 只看該作者
https://doi.org/10.1007/978-0-387-84849-5variant Chern characters with values in Bredon cohomology with coefficients in the representation ring functor .(—)(tensored by the rationals). And this in turn is applied to prove some versions of the Atiyah-Segal completion theorem for real and complex .-theory in this setting.
10#
發(fā)表于 2025-3-23 07:00:14 | 只看該作者
General Law of Differential Sensitivity,truction introduced in [9], involving spaces parameterized by a partially ordered set. In particular we present a construction, which turns a .-complex . in a canonical way into a proper .-complex Pr(X) of the same homotopy type, with control on the dimension of the new space.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湾仔区| 广南县| 承德市| 永嘉县| 敦煌市| 普定县| 张家港市| 郓城县| 德格县| 兴安盟| 龙门县| 台州市| 廉江市| 漠河县| 大安市| 木里| 剑河县| 北宁市| 诸城市| 灯塔市| 岐山县| 曲阳县| 北海市| 五台县| 于田县| 桐梓县| 合川市| 镇江市| 淮南市| 隆子县| 新宾| 花莲市| 灵石县| 二连浩特市| 眉山市| 两当县| 苗栗市| 屏边| 张北县| 汉川市| 绥芬河市|