找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck; Jean-Michel Bismut,Shu Shen,Zhaoting Wei Book 2023 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Opiate
11#
發(fā)表于 2025-3-23 12:53:38 | 只看該作者
Tommaso Polonelli,Michele MagnoWe describe the main results contained in the book. In particular, if . is a compact complex manifold, we outline the construction of the Chern character of coherent sheaves with values in Bott-Chern cohomology, we state the corresponding Riemann-Roch-Grothendieck theorem, and we give a sketch of the proof.
12#
發(fā)表于 2025-3-23 16:39:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:41:54 | 只看該作者
Francisco Martins,Luís Lopes,Hervé PaulinoWe recall elementary facts of linear algebra and differential geometry, in particular on connections on a real tangent bundle with nonzero torsion.
15#
發(fā)表于 2025-3-24 04:25:37 | 只看該作者
Dulce Domingos,Francisco Martins,Lara CaiolaWe recall the definition of the antiholomorphic superconnections of Block, and we study their functorial properties. We prove that the associated sheaf cohomology is coherent, and we show that the corresponding determinant is a holomorphic line bundle.
16#
發(fā)表于 2025-3-24 08:09:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:20 | 只看該作者
18#
發(fā)表于 2025-3-24 16:32:41 | 只看該作者
19#
發(fā)表于 2025-3-24 19:51:39 | 只看該作者
https://doi.org/10.1007/978-3-642-23583-2We establish the Riemann-Roch-Grothendieck theorem in the case of embeddings.
20#
發(fā)表于 2025-3-25 01:46:26 | 只看該作者
Hervé Paulino,Jo?o Ruivo SantosWe state the Riemann-Roch-Grothendieck theorem in the case of a projection .. Given metric data, we construct an infinite-dimensional antiholomorphic superconnection with fiberwise elliptic curvature, and we obtain corresponding Chern character forms on ., whose Bott-Chern class does not depend on the metrics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳泉市| 九台市| 三河市| 宁晋县| 舟山市| 晋江市| 宣武区| 沅江市| 丰台区| 铅山县| 威宁| 富宁县| 应城市| 乳源| 定远县| 无极县| 鄂托克旗| 明星| 和硕县| 泾川县| 阿勒泰市| 阿城市| 方山县| 榆中县| 逊克县| 泰安市| 阿勒泰市| 德惠市| 宝清县| 丰顺县| 聂荣县| 平陆县| 出国| 张家川| 苏尼特右旗| 黄陵县| 登封市| 颍上县| 五寨县| 阜康市| 固安县|