找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coherent Analytic Sheaves; Hans Grauert,Reinhold Remmert Book 1984 Springer-Verlag Berlin Heidelberg 1984 Koh?rente analytische Garbe.Math

[復(fù)制鏈接]
樓主: GALL
31#
發(fā)表于 2025-3-26 21:13:15 | 只看該作者
32#
發(fā)表于 2025-3-27 04:01:56 | 只看該作者
Irreducibility and Connectivity. Extension of Analytic Sets,ed such sets . may disconnect . as is shown by the standard example of a space consisting of two complex lines intersecting in a single point. Spaces for which this phenomenon cannot occur are called ., we give different characterizations for such spaces (cf. Theorem 1.2). A basic role is played by
33#
發(fā)表于 2025-3-27 05:26:22 | 只看該作者
34#
發(fā)表于 2025-3-27 12:41:45 | 只看該作者
Court Trial and Its Administrationen Universit?ts-Vorlesungen vorgetragen.” The Preparation Theorem expresses the fundamental fact that the zero set of a holomorphic function g displays, at least locally in suitable coordinates, an “algebraic” and hence “finite” character. This is the reason why finite holomorphic maps nowadays are the most important tool in local function theory.
35#
發(fā)表于 2025-3-27 17:41:57 | 只看該作者
Court Trial and Its Administrationfor which this phenomenon cannot occur are called ., we give different characterizations for such spaces (cf. Theorem 1.2). A basic role is played by the Global Decomposition Theorem 2.2. We demonstrate the power of this theorem by various applications in Sections 2 and 3.
36#
發(fā)表于 2025-3-27 21:30:19 | 只看該作者
37#
發(fā)表于 2025-3-27 22:18:00 | 只看該作者
Irreducibility and Connectivity. Extension of Analytic Sets,for which this phenomenon cannot occur are called ., we give different characterizations for such spaces (cf. Theorem 1.2). A basic role is played by the Global Decomposition Theorem 2.2. We demonstrate the power of this theorem by various applications in Sections 2 and 3.
38#
發(fā)表于 2025-3-28 04:29:30 | 只看該作者
39#
發(fā)表于 2025-3-28 08:20:53 | 只看該作者
40#
發(fā)表于 2025-3-28 14:12:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长岛县| 南阳市| 德江县| 遂溪县| 筠连县| 都昌县| 宣威市| 洞口县| 绍兴市| 永靖县| 罗源县| 罗平县| 漾濞| 漳平市| 宁夏| 崇州市| 横峰县| 泽普县| 武强县| 得荣县| 宁波市| 台江县| 板桥市| 龙南县| 上高县| 上林县| 阿勒泰市| 长武县| 多伦县| 江源县| 黄山市| 宁德市| 新泰市| 博湖县| 成都市| 竹山县| 新郑市| 当阳市| 九江市| 牙克石市| 汝州市|