找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cognitive Networked Sensing and Big Data; Robert Qiu,Michael Wicks Book 2014 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:02:09 | 只看該作者
42#
發(fā)表于 2025-3-28 21:52:46 | 只看該作者
43#
發(fā)表于 2025-3-28 23:24:30 | 只看該作者
44#
發(fā)表于 2025-3-29 03:19:54 | 只看該作者
Concentration of Measuretration inequalities are often used to investigate the sums of random variables (scalars, vectors and matrices). In particular, we survey the recent status of sums of random matrices in Chap. 2, which gives us the straightforward impression of the classical view of the subject.
45#
發(fā)表于 2025-3-29 08:41:42 | 只看該作者
Concentration of Eigenvalues and Their Functionalse the mathematics objects. Eigenvalues and their functionals may be shown to be Lipschitz functions so the Talagrand’s framework is sufficient. Concentration inequalities for many complicated random variables are also surveyed here from the latest publications. As a whole, we bring together concentr
46#
發(fā)表于 2025-3-29 12:24:01 | 只看該作者
Non-asymptotic, Local Theory of Random Matricese in the sense of random matrices. The point of viewing this chapter as a novel statistical tool will have far-reaching impact on applications such as covariance matrix estimation, detection, compressed sensing, low-rank matrix recovery, etc. Two primary examples are: (1) approximation of covariance
47#
發(fā)表于 2025-3-29 18:14:37 | 只看該作者
48#
發(fā)表于 2025-3-29 23:10:14 | 只看該作者
Matrix Completion and Low-Rank Matrix Recoveryssed sensing exploits the sparsity structure in a vector, while low-rank matrix recovery—Chap. 8—exploits the low-rank structure of a matrix: sparse in the vector composed of singular values. The theory ultimately traces back to concentration of measure due to high dimensions.
49#
發(fā)表于 2025-3-30 00:45:59 | 只看該作者
Covariance Matrix Estimation in High Dimensionser should be more basic than Chaps. 7 and 8—thus should be treated earlier chapters. Recent work on compressed sensing and low-rank matrix recovery supports the idea that sparsity can be exploited for statistical estimation, too. The treatment of this subject is very superficial, due to the limited
50#
發(fā)表于 2025-3-30 07:05:01 | 只看該作者
Database Friendly Data Processingence of sensing, computing, networking and control. Data base is often neglected in traditional treatments in estimation, detection, etc..Modern scientific computing demands efficient algorithms for dealing with large datasets—Big Data. Often these datasets can be fruitfully represented and manipula
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万年县| 包头市| 色达县| 宜阳县| 高青县| 文安县| 昭通市| 清远市| 临清市| 安泽县| 碌曲县| 奇台县| 孟村| 南涧| 新龙县| 尉氏县| 鄂托克旗| 利辛县| 通渭县| 庆城县| 龙山县| 泰顺县| 江华| 郁南县| 阿荣旗| 余庆县| 凤凰县| 龙山县| 华安县| 河西区| 通城县| 墨竹工卡县| 昌图县| 东丰县| 察隅县| 大足县| 邢台县| 林州市| 定西市| 镇安县| 彩票|