找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theory and Applications; 5th International Ca ángela I. Barbero,Vitaly Skachek,?yvind Ytrehus Conference proceedings 2017 Springer I

[復(fù)制鏈接]
樓主: polysomnography
41#
發(fā)表于 2025-3-28 18:04:29 | 只看該作者
ángela I. Barbero,Vitaly Skachek,?yvind YtrehusIncludes supplementary material:
42#
發(fā)表于 2025-3-28 20:05:07 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/228890.jpg
43#
發(fā)表于 2025-3-29 02:24:49 | 只看該作者
44#
發(fā)表于 2025-3-29 04:35:11 | 只看該作者
45#
發(fā)表于 2025-3-29 07:24:39 | 只看該作者
Erasure Correction and Locality of Hypergraph Codes,gular hypergraphs based on (.,?.)-regular bipartite graphs. We show that for both the regular and biregular case, when the underlying hypergraph has expansion properties, the guaranteed erasure correcting capability for the resulting codes is improved. We provide bounds on the minimum stopping set s
46#
發(fā)表于 2025-3-29 14:33:24 | 只看該作者
47#
發(fā)表于 2025-3-29 18:21:15 | 只看該作者
48#
發(fā)表于 2025-3-29 21:12:51 | 只看該作者
Decoding a Perturbed Sequence Generated by an LFSR,o generate the sequence. The situation is different when the sequence is perturbed; for instance, when it is sent through a transmission channel. LFSRs can be described as autonomous systems. A perturbed sequence of bits generated by an LFSR can be interpreted as a codeword in the binary linear code
49#
發(fā)表于 2025-3-30 03:11:51 | 只看該作者
A Construction of Orbit Codes, as orbits when the action of a subgroup of the general linear group on the set of all subspaces of . is considered. In this paper we present a construction of an Abelian non-cyclic orbit code whose minimum subspace distance is maximal.
50#
發(fā)表于 2025-3-30 04:10:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莆田市| 威海市| 汕尾市| 新宾| 霞浦县| 昌平区| 凤翔县| 黑河市| 宁武县| 尼勒克县| 桦南县| 晋江市| 祥云县| 沐川县| 马关县| 新密市| 台中县| 昌图县| 民乐县| 甘肃省| 肥东县| 英超| 石渠县| 江阴市| 鲁山县| 绍兴市| 修武县| 山阳县| 靖江市| 巴彦淖尔市| 高阳县| 宜昌市| 玉田县| 措勤县| 布尔津县| 台湾省| 樟树市| 和静县| 大安市| 会昌县| 东乡族自治县|