找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Codes on Algebraic Curves; Serguei A. Stepanov Book 1999 Kluwer Academic/Plenum Publishers 1999 Prime.Prime number.algebra.algebraic curve

[復制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-26 23:38:19 | 只看該作者
Algebraic Curvess, linear systems, Jacobians, differential forms and their residues, the Riemann—Roch theorem, Hurwitz and Plücker genus formulas, special divisors and Weierstrass points. We do not consider here the arithmetical properties of curves and for that reason the ground field.is assumed to be algebraically closed.
32#
發(fā)表于 2025-3-27 02:30:08 | 只看該作者
33#
發(fā)表于 2025-3-27 08:36:33 | 只看該作者
34#
發(fā)表于 2025-3-27 10:14:17 | 只看該作者
Decoding Geometric Goppa Codesce of decoding algorithms and ending with ones on the construction of efficient algorithms which can easily be used in practice. For a detailed treatment of the complexity of algorithms we refer the reader to Aho, Hoperoft and Ulman [2].
35#
發(fā)表于 2025-3-27 14:51:15 | 只看該作者
36#
發(fā)表于 2025-3-27 18:20:29 | 只看該作者
37#
發(fā)表于 2025-3-28 00:59:22 | 只看該作者
38#
發(fā)表于 2025-3-28 02:49:37 | 只看該作者
Supporting Data Privacy in P2P Systemss, linear systems, Jacobians, differential forms and their residues, the Riemann—Roch theorem, Hurwitz and Plücker genus formulas, special divisors and Weierstrass points. We do not consider here the arithmetical properties of curves and for that reason the ground field.is assumed to be algebraically closed.
39#
發(fā)表于 2025-3-28 08:53:32 | 只看該作者
Privacy in Online Social Networkss of algebraic varieties, we must develop the corresponding theory for the case of non-closed fields such as ? or ..For example, in applying algebraic geometry to coding theory, one should study curves defined over . and their points with coordinates in . (such points are called .).
40#
發(fā)表于 2025-3-28 11:04:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁蒗| 阿鲁科尔沁旗| 郸城县| 金山区| 紫金县| 蒙山县| 临安市| 泗洪县| 江山市| 唐河县| 清水河县| 邛崃市| 沿河| 临安市| 田东县| 许昌县| 玛纳斯县| 于田县| 白水县| 乌拉特后旗| 手机| 筠连县| 沧州市| 吉隆县| 卢湾区| 芒康县| 奉贤区| 西峡县| 富民县| 大名县| 祁门县| 洛阳市| 历史| 团风县| 紫阳县| 阿巴嘎旗| 山丹县| 敦化市| 祁连县| 黑河市| 通江县|