找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clusters, Orders, and Trees: Methods and Applications; In Honor of Boris Mi Fuad Aleskerov,Boris Goldengorin,Panos M. Pardalos Book 2014 Sp

[復(fù)制鏈接]
樓主: CLAST
41#
發(fā)表于 2025-3-28 15:55:53 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:23 | 只看該作者
43#
發(fā)表于 2025-3-29 02:12:15 | 只看該作者
44#
發(fā)表于 2025-3-29 05:24:39 | 只看該作者
From Separating to Proximal Plane Classifiers: A Reviewescribe different proposals to obtain two proximal planes representing the two classes in the binary classification case. In details, we deal with proximal SVM classification by means of a generalized eigenvalues problem. Furthermore, some regularization techniques are analyzed in order to solve the
45#
發(fā)表于 2025-3-29 10:22:53 | 只看該作者
Single or Multiple Consensus for Linear Ordershen voters rank candidates in an elective process or in Preference Aggregation, when individuals or criteria put several orders on the items. Often the consensus order is a median order for Kendall’s distance, but other definitions, more easily computable, can be used. In the following, we tackle th
46#
發(fā)表于 2025-3-29 14:39:00 | 只看該作者
Weak Hierarchies: A Central Clustering Structurethem. Any cluster collection turns out to be a .-weak hierarchy for some integer .. Weak hierarchies play a central role in cluster analysis in several aspects: they are defined as the 2-weak hierarchies, so that they not only extend directly the well-known hierarchical structure, but they are also
47#
發(fā)表于 2025-3-29 16:23:01 | 只看該作者
Some Observations on Oligarchies, Internal Direct Sums, and Lattice Congruencesemingly disparate disciplines can be examined, proved, and subtle relationships can be discovered among them. Typical applications might involve decision theory when presented with evidence from sources that yield conflicting optimal advice, insights into the internal structure of a finite lattice,
48#
發(fā)表于 2025-3-29 20:35:55 | 只看該作者
49#
發(fā)表于 2025-3-30 01:50:15 | 只看該作者
50#
發(fā)表于 2025-3-30 05:01:59 | 只看該作者
Selecting the Minkowski Exponent for Intelligent K-Means with Feature Weightingfor a Minkowski metric-based version of K-Means, in each of the following two settings: semi-supervised and unsupervised. This paper presents experimental evidence that solutions found with the proposed approaches are sufficiently close to the optimum.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南华县| 额敏县| 桐梓县| 襄汾县| 荆州市| 天镇县| 仙居县| 阿巴嘎旗| 安泽县| 赤壁市| 嵊泗县| 元谋县| 呼和浩特市| 慈溪市| 北辰区| 东方市| 和林格尔县| 金湖县| 砚山县| 榆树市| 六枝特区| 汾阳市| 祁阳县| 固原市| 新干县| 喀喇| 双辽市| 常德市| 靖边县| 金秀| 宿迁市| 株洲市| 会同县| 吉首市| 桓台县| 隆子县| 山丹县| 定襄县| 盖州市| 龙海市| 松滋市|