找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clustering Methods for Big Data Analytics; Techniques, Toolboxe Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir Book 2019 Springer Nature Switzerland

[復(fù)制鏈接]
查看: 35930|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:34:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Clustering Methods for Big Data Analytics
副標(biāo)題Techniques, Toolboxe
編輯Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir
視頻videohttp://file.papertrans.cn/229/228548/228548.mp4
概述Includes the most recent and innovative advances in Big Data Clustering.Describes recent tools, techniques, and frameworks for Big Data Analytics.Introduces surveys, applications and case studies of B
叢書名稱Unsupervised and Semi-Supervised Learning
圖書封面Titlebook: Clustering Methods for Big Data Analytics; Techniques, Toolboxe Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir Book 2019 Springer Nature Switzerland
描述.This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation..
出版日期Book 2019
關(guān)鍵詞Clustering large scale data; Clustering heterogeneous data; Deep learning methods for clustering; Appli
版次1
doihttps://doi.org/10.1007/978-3-319-97864-2
isbn_softcover978-3-030-07419-7
isbn_ebook978-3-319-97864-2Series ISSN 2522-848X Series E-ISSN 2522-8498
issn_series 2522-848X
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Clustering Methods for Big Data Analytics影響因子(影響力)




書目名稱Clustering Methods for Big Data Analytics影響因子(影響力)學(xué)科排名




書目名稱Clustering Methods for Big Data Analytics網(wǎng)絡(luò)公開度




書目名稱Clustering Methods for Big Data Analytics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Clustering Methods for Big Data Analytics被引頻次




書目名稱Clustering Methods for Big Data Analytics被引頻次學(xué)科排名




書目名稱Clustering Methods for Big Data Analytics年度引用




書目名稱Clustering Methods for Big Data Analytics年度引用學(xué)科排名




書目名稱Clustering Methods for Big Data Analytics讀者反饋




書目名稱Clustering Methods for Big Data Analytics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:56:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:37:42 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:22 | 只看該作者
5#
發(fā)表于 2025-3-22 11:04:03 | 只看該作者
6#
發(fā)表于 2025-3-22 14:49:41 | 只看該作者
7#
發(fā)表于 2025-3-22 18:34:29 | 只看該作者
8#
發(fā)表于 2025-3-23 00:24:53 | 只看該作者
,Schwei?en von Aluminiumwerkstoffen,uch data into groups of similar objects. Several methods were proposed during the last decade to deal with this important challenge. We propose in this chapter an overview of the existing clustering methods with a special emphasis on scalable partitional methods. We design a new categorizing model b
9#
發(fā)表于 2025-3-23 03:11:48 | 只看該作者
10#
發(fā)表于 2025-3-23 06:34:00 | 只看該作者
,Prüfung von Schwei?verbindungen,of these datasets has diverse applications, such as detecting fraud and illegal transactions, characterizing major services, identifying financial hotspots, and characterizing usage and performance characteristics of large peer-to-peer consensus-based systems. Unsupervised learning methods in genera
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安西县| 晋江市| 宾阳县| 靖边县| 昌乐县| 溧阳市| 滕州市| 遵义县| 六盘水市| 丰原市| 奉化市| 石城县| 江孜县| 赫章县| 石渠县| 宁乡县| 桦南县| 搜索| 介休市| 南宫市| 靖边县| 盘山县| 楚雄市| 遂川县| 长海县| 平乐县| 吉林省| 名山县| 龙泉市| 夹江县| 汤原县| 老河口市| 沈阳市| 无为县| 锦屏县| 奉化市| 苍山县| 怀仁县| 五大连池市| 舞钢市| 鄢陵县|