找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clinical Image-Based Procedures; 11th Workshop, CLIP Yufei Chen,Marius George Linguraru,Cristina Oyarzu Conference proceedings 2023 The Ed

[復(fù)制鏈接]
樓主: 表范圍
31#
發(fā)表于 2025-3-26 22:18:31 | 只看該作者
https://doi.org/10.1007/978-981-16-4023-0paper, we propose a feature patch based attention model to improve the classification accuracy of dental caries in CBCT images. We extract overlapping patches from the 3D feature maps and assign every patch with a corresponding weight computed by adaptive learning to achieve automatic screening of r
32#
發(fā)表于 2025-3-27 01:36:16 | 只看該作者
,Fast Auto-differentiable Digitally Reconstructed Radiographs for?Solving Inverse Problems in?Intraoemented this vectorized version of Siddon’s method in PyTorch, taking advantage of the library’s strong automatic differentiation engine to make this DRR generator fully differentiable with respect to its parameters. Additionally, using GPU-accelerated tensor computation enables our vectorized imple
33#
發(fā)表于 2025-3-27 08:53:04 | 只看該作者
,Machine Learning Based Approach for?Motion Detection and?Estimation in?Routinely Acquired Low Resoll is trained to evaluate the severity and time point of possible motion..The model for the first phase achieves a precision of 20.78?% and a recall of 69.57?%, while the model for the second phase reaches a precision of 67.71?% and a recall of 98.49?% to detect non-negligible motion. Despite low pre
34#
發(fā)表于 2025-3-27 11:42:08 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:52 | 只看該作者
,STAU-Net: A Spatial Structure Attention Network for?3D Coronary Artery Segmentation,ets the loss contextual information by fusing the feature map of the upper decoder. Also, the framework first resamples the input to a fixed size to implement training and up-sample to original size by customized post-processing at output stage. Compared with other related segmentation networks, the
36#
發(fā)表于 2025-3-27 18:06:42 | 只看該作者
,Feature Patch Based Attention Model for?Dental Caries Classification,paper, we propose a feature patch based attention model to improve the classification accuracy of dental caries in CBCT images. We extract overlapping patches from the 3D feature maps and assign every patch with a corresponding weight computed by adaptive learning to achieve automatic screening of r
37#
發(fā)表于 2025-3-27 22:09:24 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:00 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:41 | 只看該作者
40#
發(fā)表于 2025-3-28 10:57:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆林| 偏关县| 诸城市| 维西| 民权县| 临漳县| 任丘市| 万载县| 天津市| 澜沧| 汨罗市| 大渡口区| 米林县| 德化县| 南宫市| 五河县| 镇安县| 东丰县| 梁平县| 五寨县| 龙游县| 宾阳县| 财经| 阿坝| 文安县| 青田县| 澳门| 罗平县| 铜陵市| 武冈市| 达州市| 深水埗区| 广昌县| 长岭县| 晋中市| 普陀区| 山东省| 工布江达县| 沅陵县| 南乐县| 库尔勒市|