找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Volume 1: Algebra an Rafa? Ab?amowicz,Bertfried Fauser Book 2000 Springer

[復(fù)制鏈接]
樓主: 手鐲
41#
發(fā)表于 2025-3-28 17:38:43 | 只看該作者
42#
發(fā)表于 2025-3-28 20:41:24 | 只看該作者
Dirac Operator, Hopf Algebra of Renormalization, and Structure of Spacetime geometry of spacetime itself may be dictated by the renormalization processes in quantum field theories. Two recently discovered and intimately related Hopf algebras — the Hopf algebra for the computation of the local index formula of transversally hypoelliptic operators and the algebra of renormal
43#
發(fā)表于 2025-3-29 02:22:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:32:22 | 只看該作者
45#
發(fā)表于 2025-3-29 07:45:51 | 只看該作者
Rochelle Gladys Kemitare,Joshua Mugambwaspaces whose elements can be associated with the tangent and momentum vectors of trajectories in the manifold. The fiber also contains a subspace whose elements are associated with the local flow of action of each trajectory. The condition of minimum action translates into a constraint on the original vector . in the direct product structure.
46#
發(fā)表于 2025-3-29 12:45:59 | 只看該作者
47#
發(fā)表于 2025-3-29 15:54:02 | 只看該作者
Multiparavector Subspaces of C?n: Theorems and Applicationse representations of such entities, for example by modeling spacetime vectors by paravectors (sums of scalars and vectors). This contribution explores the geometry of subspaces generated by paravectors of .?., the Clifford algebra of . -dimensional Euclidean space, and its applications to physical phenomena.
48#
發(fā)表于 2025-3-29 21:43:41 | 只看該作者
Electron Scattering in the Spacetime Algebrandependent of spin, we can provide manifestly spin-independent results. Spin basis states are not needed, and we do no spin sums, instead dealing with the spin orientation directly. We perform some example calculations for single electron scattering and briefly discuss more complicated cases in QED.
49#
發(fā)表于 2025-3-30 00:38:30 | 只看該作者
50#
發(fā)表于 2025-3-30 05:44:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴里| 江门市| 蕲春县| 古交市| 文水县| 梅州市| 襄樊市| 津南区| 大新县| 东丽区| 长白| 林州市| 靖州| 临武县| 五家渠市| 都江堰市| 淮阳县| 布拖县| 娱乐| 崇义县| 新竹市| 鄂州市| 临湘市| 贵德县| 郴州市| 浦县| 治多县| 舟山市| 吴川市| 东平县| 天全县| 松桃| 卢湾区| 遂昌县| 徐闻县| 中山市| 曲水县| 嫩江县| 米易县| 阿坝县| 柳江县|