找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Proceedings of the T F. Brackx,R. Delanghe,H. Serras Conference proceedin

[復(fù)制鏈接]
樓主: Prehypertension
51#
發(fā)表于 2025-3-30 10:32:54 | 只看該作者
Agriculture Production and ConsumptionThe paper is a commentary on Tables 13.66 of the author’s book [3]. These classify the conjugation anti-involutions of the . Clifford algebras naturally associated to the orthogonal space R.for each signature ., ..
52#
發(fā)表于 2025-3-30 12:53:06 | 只看該作者
Natalia Saukkonen,Johanna KirjavainenThe Jordan form of an element in a algebra over the complex field is uniquely determined by special generators of the factor algebra of its minimal polynomial. Examples are considered in Clifford algebra.
53#
發(fā)表于 2025-3-30 18:35:59 | 只看該作者
Balance Between Ecological and Human NeedsBy T..MT. is constructed an isomorphism between . and its dual space. We introduce the notion of uniform regularity and use weighted spaces for solving linear boundary value problems of Dirichlet-type in unbounded domains with unbounded boundary.
54#
發(fā)表于 2025-3-30 22:10:22 | 只看該作者
55#
發(fā)表于 2025-3-31 01:35:20 | 只看該作者
Antonio Chamorro-Mera,Rafael Robina-RamírezIn this note I discuss some properties and (anti)-commutation relations of Clifford differentiation operators on .. which are geometrical invariants. The results are a happy and accidental combination of earlier work on spherical vector fields [G] and inspiration drawn from Van Acker’s PhD-Thesis [A] on Clifford differential operators.
56#
發(fā)表于 2025-3-31 08:20:28 | 只看該作者
Enrique Carlos Bianchi,Cecilia BianchiWe examine regular functions of a quaternionic variable whose inverse is also regular. The most interesting case is when the inverse of a left regular function is right regular.
57#
發(fā)表于 2025-3-31 10:36:20 | 只看該作者
Quantum Clifford AlgebrasQuantum multiparameter deformation of real Clifford algebras is proposed. The corresponding irreducible representations are found.
58#
發(fā)表于 2025-3-31 13:36:37 | 只看該作者
59#
發(fā)表于 2025-3-31 21:08:54 | 只看該作者
60#
發(fā)表于 2025-3-31 23:22:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 16:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民丰县| 横山县| 信宜市| 綦江县| 娄底市| 吕梁市| 张家界市| 阿荣旗| 玉龙| 勐海县| 陈巴尔虎旗| 建湖县| 隆尧县| 汾阳市| 镇安县| 安仁县| 铜陵市| 游戏| 乾安县| 定远县| 新竹市| 延边| 松原市| 南郑县| 丽江市| 达拉特旗| 喀喇沁旗| 正阳县| 安溪县| 保亭| 临澧县| 泽库县| 株洲县| 定边县| 佛坪县| 洞口县| 集安市| 双牌县| 海兴县| 庆安县| 郴州市|