找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; A. Micali,R. Boudet,J. Helmstetter Book 1992 Springer Science+Business M

[復(fù)制鏈接]
查看: 25293|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:42:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Clifford Algebras and their Applications in Mathematical Physics
編輯A. Micali,R. Boudet,J. Helmstetter
視頻videohttp://file.papertrans.cn/228/227350/227350.mp4
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: Clifford Algebras and their Applications in Mathematical Physics;  A. Micali,R. Boudet,J. Helmstetter Book 1992 Springer Science+Business M
描述This volume contains selected papers presented at the SecondWorkshop on Clifford Algebras and their Applications in MathematicalPhysics. These papers range from various algebraic and analyticaspects of Clifford algebras to applications in, for example, gaugefields, relativity theory, supersymmetry and supergravity, andcondensed phase physics. Included is a biography and list ofpublications of Mário Schenberg, who, next to Marcel Riesz, hasmade valuable contributions to these topics. .This volume will be of interest to mathematicians working in thefields of algebra, geometry or special functions, to physicistsworking on quantum mechanics or supersymmetry, and to historians ofmathematical physics. .
出版日期Book 1992
關(guān)鍵詞Algebraic structure; Mathematica; algebra; clifford algebra; field; geometry; gravity; mathematical physics
版次1
doihttps://doi.org/10.1007/978-94-015-8090-8
isbn_softcover978-90-481-4130-2
isbn_ebook978-94-015-8090-8Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media B.V. 1992
The information of publication is updating

書目名稱Clifford Algebras and their Applications in Mathematical Physics影響因子(影響力)




書目名稱Clifford Algebras and their Applications in Mathematical Physics影響因子(影響力)學(xué)科排名




書目名稱Clifford Algebras and their Applications in Mathematical Physics網(wǎng)絡(luò)公開度




書目名稱Clifford Algebras and their Applications in Mathematical Physics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Clifford Algebras and their Applications in Mathematical Physics被引頻次




書目名稱Clifford Algebras and their Applications in Mathematical Physics被引頻次學(xué)科排名




書目名稱Clifford Algebras and their Applications in Mathematical Physics年度引用




書目名稱Clifford Algebras and their Applications in Mathematical Physics年度引用學(xué)科排名




書目名稱Clifford Algebras and their Applications in Mathematical Physics讀者反饋




書目名稱Clifford Algebras and their Applications in Mathematical Physics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:56:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:18:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:47:29 | 只看該作者
5#
發(fā)表于 2025-3-22 12:28:29 | 只看該作者
Algebraic spinors for R9,1inors form a space of dimension eight over an algebra of split quaternions while the complex spinors form a space of dimension eight over a singular division algebra. Properties of bilinear forms on both spaces are discussed and a comparison is made with spinors in dimension four. Explicit spinor ba
6#
發(fā)表于 2025-3-22 16:01:29 | 只看該作者
7#
發(fā)表于 2025-3-22 21:06:21 | 只看該作者
Clifford groups for arbitrary quadratic formslly interested about degenerate quadratic forms; I am interested in defining Clifford groups in algebras which look like classical Clifford algebras, but are not so easy to study; and I have come to the conclusion that many important ideas already appear when one is working with degenerate quadratic
8#
發(fā)表于 2025-3-22 22:27:22 | 只看該作者
9#
發(fā)表于 2025-3-23 02:21:52 | 只看該作者
Clifford algebras and M?bius transformationsrtue of modern results, however, it is clear that Clifford algebras make a structure which is suited also to other purposes. Such another purpose we want to pay attention to is the representation of conformai groups. We shall present a most rewarding Clifford algebra approach to conformai geometry.
10#
發(fā)表于 2025-3-23 06:02:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
象山县| 威海市| 三江| 化隆| 海口市| 菏泽市| 郸城县| 仁寿县| 丹东市| 石景山区| 舟曲县| 元朗区| 石楼县| 玉环县| 繁昌县| 甘德县| 湘潭市| 中卫市| 镇江市| 东山县| 繁峙县| 运城市| 普兰县| 杭锦后旗| 普洱| 茶陵县| 抚宁县| 太和县| 秭归县| 双牌县| 长宁县| 布拖县| 丹寨县| 乳山市| 安新县| 二连浩特市| 光山县| 星子县| 农安县| 上栗县| 兰考县|