找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Volume 2: Clifford A John Ryan,Wolfgang Spr??ig Book 2000 Springer Scienc

[復制鏈接]
樓主: incoherent
31#
發(fā)表于 2025-3-26 23:53:02 | 只看該作者
32#
發(fā)表于 2025-3-27 04:04:01 | 只看該作者
33#
發(fā)表于 2025-3-27 05:42:30 | 只看該作者
34#
發(fā)表于 2025-3-27 09:53:40 | 只看該作者
The Geometry of Generalized Dirac Operators and the Standard Model of Particle Physicsodel of particle physics in a unified way. In this frame the fundamental objects are generalized Dirac operators, and the geometrical setup is that of a Clifford module bundle over an even dimensional closed Riemannian manifold.
35#
發(fā)表于 2025-3-27 14:20:20 | 只看該作者
Hypercomplex Derivability — The Characterization of Monogenic Functions in ?, by Their Derivativeonogenic functions) the existence of a monogenic derivative does not directly follow. We show that if some relation between higher order differential forms are introduced then, (as in the complex case) the conjugated Cauchy-Riemann operator again gives the monogenic derivative of a monogenic function in ?.
36#
發(fā)表于 2025-3-27 19:02:15 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:49 | 只看該作者
38#
發(fā)表于 2025-3-28 03:12:14 | 只看該作者
The M?bius Transformation, Green Function and the Degenerate Elliptic Equation the compactification,?. U ∞, of ?.. With the aid of Green function we solve the Dirichlet problem for the non-homogeneous Laplace-Beltrami equation. Then we show that for the Laplace-Beltrami equation (which is a degenerate elliptic type) there exists twice continuously differentiable solutions on
39#
發(fā)表于 2025-3-28 09:15:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:30:18 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临汾市| 广丰县| 贵定县| 东辽县| 中方县| 虞城县| 涡阳县| 合水县| 张家界市| 从化市| 安吉县| 伊春市| 仁寿县| 莫力| 福鼎市| 嘉荫县| 中卫市| 广宁县| 平阳县| 兴文县| 孝感市| 房山区| 遵义县| 门源| 石景山区| 广河县| 宣城市| 许昌市| 泸州市| 江津市| 泽普县| 卓尼县| 天峻县| 道真| 台中县| 长子县| 寻乌县| 宜君县| 祥云县| 九龙城区| 云霄县|