找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford (Geometric) Algebras; with applications to William E. Baylis Conference proceedings 1996 Birkh?user Boston 1996 Albert Einstein.Ph

[復(fù)制鏈接]
樓主: SORB
41#
發(fā)表于 2025-3-28 14:38:31 | 只看該作者
42#
發(fā)表于 2025-3-28 20:04:34 | 只看該作者
Responding to the Climate ThreatIn this and the following lecture we aim to show that spacetime algebra simplifies the study of the Dirac theory, and that the Dirac theory, once formulated in the spacetime algebra, is a powerful and flexible tool for the analysis of all aspects of electron physics — not just relativistic theory
43#
發(fā)表于 2025-3-29 01:16:21 | 只看該作者
44#
發(fā)表于 2025-3-29 06:55:49 | 只看該作者
45#
發(fā)表于 2025-3-29 08:48:54 | 只看該作者
46#
發(fā)表于 2025-3-29 15:21:06 | 只看該作者
Linear Algebra,We begin by summarising the notations and conventions which we will employ throughout our series of lectures. Summation convention and natural units (? = c = ∈. = G = l) are employed throughout, except where explicitly stated.
47#
發(fā)表于 2025-3-29 18:15:24 | 只看該作者
48#
發(fā)表于 2025-3-29 23:28:20 | 只看該作者
Electron Physics I,In this and the following lecture we aim to show that spacetime algebra simplifies the study of the Dirac theory, and that the Dirac theory, once formulated in the spacetime algebra, is a powerful and flexible tool for the analysis of all aspects of electron physics — not just relativistic theory
49#
發(fā)表于 2025-3-30 03:31:13 | 只看該作者
,Gravity V — Further Applications,We end this series of lectures by looking at three further applications of our approach to gravity — collapsing dust, cosmology, and cosmic strings.
50#
發(fā)表于 2025-3-30 07:46:30 | 只看該作者
Eigenspinors in Electrodynamics,The eigenspinor concept is a powerful tool for finding the motion of charges in electromagnetic fields. This lecture examines the concept and illustrates its use in classical electrodynamics. The concept is extended to quantum fields in the third lecture.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尚义县| 东平县| 长宁区| 肇州县| 连城县| 永和县| 伊川县| 崇义县| 金门县| 墨江| 育儿| 平乐县| 长沙县| 肥乡县| 宁化县| 南江县| 中牟县| 西吉县| 厦门市| 腾冲县| 呼伦贝尔市| 石渠县| 静乐县| 新巴尔虎左旗| 通州市| 太原市| 红桥区| 鄂伦春自治旗| 孟村| 九龙城区| 大港区| 旬阳县| 黄陵县| 张家川| 崇仁县| 湘潭县| 庆元县| 东明县| 裕民县| 高碑店市| 蓬溪县|