找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification in BioApps; Automation of Decisi Nilanjan Dey,Amira S. Ashour,Surekha Borra Book 2018 Springer International Publishing AG 2

[復制鏈接]
查看: 7522|回復: 57
樓主
發(fā)表于 2025-3-21 18:57:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classification in BioApps
副標題Automation of Decisi
編輯Nilanjan Dey,Amira S. Ashour,Surekha Borra
視頻videohttp://file.papertrans.cn/228/227209/227209.mp4
概述Provides broad background information on and solutions to existing challenges in classifiers used for biomedical applications.Addresses various applications for the classification of biomedical signal
叢書名稱Lecture Notes in Computational Vision and Biomechanics
圖書封面Titlebook: Classification in BioApps; Automation of Decisi Nilanjan Dey,Amira S. Ashour,Surekha Borra Book 2018 Springer International Publishing AG 2
描述.This book on classification in biomedical image applications presents original and valuable research work on advances in this field, which covers the taxonomy of both supervised and unsupervised models, standards, algorithms, applications and challenges..Further, the book highlights recent scientific research on artificial neural networks in biomedical applications, addressing the fundamentals of artificial neural networks, support vector machines and other advanced classifiers, as well as their design and optimization..In addition to exploring recent endeavours in the multidisciplinary domain of sensors, the book introduces readers to basic definitions and features, signal filters and processing, biomedical sensors and automation of biomeasurement systems. The target audience includes researchers and students at engineering and medical schools, researchers and engineers in the biomedical industry, medical doctors and healthcare professionals.?.
出版日期Book 2018
關(guān)鍵詞Bio-medical signal/image analysis; Decision support systems; Machine learning; Support vector machine; F
版次1
doihttps://doi.org/10.1007/978-3-319-65981-7
isbn_softcover978-3-319-88142-3
isbn_ebook978-3-319-65981-7Series ISSN 2212-9391 Series E-ISSN 2212-9413
issn_series 2212-9391
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Classification in BioApps影響因子(影響力)




書目名稱Classification in BioApps影響因子(影響力)學科排名




書目名稱Classification in BioApps網(wǎng)絡(luò)公開度




書目名稱Classification in BioApps網(wǎng)絡(luò)公開度學科排名




書目名稱Classification in BioApps被引頻次




書目名稱Classification in BioApps被引頻次學科排名




書目名稱Classification in BioApps年度引用




書目名稱Classification in BioApps年度引用學科排名




書目名稱Classification in BioApps讀者反饋




書目名稱Classification in BioApps讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:42:32 | 只看該作者
https://doi.org/10.1007/978-3-319-65981-7Bio-medical signal/image analysis; Decision support systems; Machine learning; Support vector machine; F
板凳
發(fā)表于 2025-3-22 00:38:03 | 只看該作者
地板
發(fā)表于 2025-3-22 06:29:22 | 只看該作者
Researching Cultures of Learning image quality is the need of the hour. The effective, yet automatic methods for measurement of quality of a medical image are of particular interest. This chapter is an overview of different medical imaging technologies, and the related image quality assessment (IQA) algorithms. The main focus is o
5#
發(fā)表于 2025-3-22 11:11:06 | 只看該作者
Gulnissa Makhanova,Martin Cortazzic resonance images. A new method called the complex orthogonal Ripplet-II transform is proposed as a feature extraction procedure. Artificial neural network is utilized to classify the obtained features as a hemangioma or cyst. The results are evaluated with the results of the systems using Ridgelet
6#
發(fā)表于 2025-3-22 12:55:46 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:06 | 只看該作者
8#
發(fā)表于 2025-3-23 00:41:38 | 只看該作者
Benjamin Farrand,Helena Carrapiconificance because, as has been stated frequently, the possibility of developing breast cancer is increased if the breast tissue is of high density. Radiologists predict breast tissue density by visually examining the mammogram, and the accuracy of this diagnosis is solely dependent on the experience
9#
發(fā)表于 2025-3-23 05:26:20 | 只看該作者
10#
發(fā)表于 2025-3-23 08:36:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁阳县| 民乐县| 温宿县| 永济市| 旬阳县| 左云县| 龙里县| 曲靖市| 江陵县| 宝清县| 阿克陶县| 隆尧县| 桐梓县| 莱西市| 无为县| 渭源县| 涞水县| 金堂县| 霍林郭勒市| 峨眉山市| 黄骅市| 蕉岭县| 望都县| 阳高县| 乌拉特中旗| 嘉定区| 原阳县| 华池县| 水富县| 门源| 武强县| 泰来县| 上蔡县| 亚东县| 台中县| 昭苏县| 三河市| 清涧县| 尉犁县| 玉树县| 临湘市|