找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification Applications with Deep Learning and Machine Learning Technologies; Laith Abualigah Book 2023 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: Consonant
11#
發(fā)表于 2025-3-23 12:06:08 | 只看該作者
Jerzy Korczak,Aleksander Fafu?attack possibility) dataset, freely available on kagle. The data was divided into three categories consisting of (303, 909, 1808) instances which were analyzed on the WEKA platform. The results showed that the RFC was the best performer.
12#
發(fā)表于 2025-3-23 15:34:49 | 只看該作者
Mango Varieties Classification-Based Optimization with Transfer Learning and Deep Learning Approachollected and obtain a deep learning model which is able to classify four types of mango (Alampur Baneshan, Alphonso, Harum Manis and Keitt) automatically. In summary, the objective in this paper is to develop a deep learning algorithm to automatically classify four types of mango cultivar.
13#
發(fā)表于 2025-3-23 20:12:38 | 只看該作者
A Novel Big Data Classification Technique for Healthcare Application Using Support Vector Machine, ttack possibility) dataset, freely available on kagle. The data was divided into three categories consisting of (303, 909, 1808) instances which were analyzed on the WEKA platform. The results showed that the RFC was the best performer.
14#
發(fā)表于 2025-3-24 00:23:16 | 只看該作者
15#
發(fā)表于 2025-3-24 02:42:43 | 只看該作者
Research in Soviet Social Psychologyvert into jpg format and augmentation. Based on the accuracy result from the model, the best model for the salak classification is ResNet50 which gave an accuracy of 84% followed by VGG16 that gave an accuracy of 77% and CNN which gave 31%.
16#
發(fā)表于 2025-3-24 10:07:55 | 只看該作者
17#
發(fā)表于 2025-3-24 13:54:32 | 只看該作者
Iryna Zolotaryova,Anna Khodyrevskawith a higher accuracy. In the proposed work, we also inspected two transfer learning methods in the classification of markisa which are VGG-16 and InceptionV3. The results showed that the performance of the first proposed CNN model outperforms VGG-16 (95% accuracy) and InceptionV3 (65% accuracy).
18#
發(fā)表于 2025-3-24 17:34:11 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:22 | 只看該作者
20#
發(fā)表于 2025-3-25 01:02:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左贡县| 三门县| 贡嘎县| 边坝县| 兴化市| 三门县| 台东市| 镇坪县| 高雄县| 扶绥县| 涟源市| 乌拉特前旗| 云阳县| 武宣县| 喜德县| 洱源县| 栾城县| 炎陵县| 海林市| 澎湖县| 浙江省| 五家渠市| 榆社县| 靖江市| 闵行区| 高邮市| 周至县| 武山县| 武陟县| 阜宁县| 枞阳县| 江西省| 普兰县| 日照市| 班戈县| 荣昌县| 安庆市| 略阳县| 湖南省| 万源市| 明水县|