找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Mechanics of Noncentral Potentials; A Survey of Two-Dime R. S. Kaushal Textbook 1998 Springer Science+Business Media

[復制鏈接]
樓主: 航天飛機
31#
發(fā)表于 2025-3-26 22:43:56 | 只看該作者
32#
發(fā)表于 2025-3-27 03:08:18 | 只看該作者
33#
發(fā)表于 2025-3-27 05:17:20 | 只看該作者
Quantum Mechanics of Noncentral Time Independent Systems,ding might require an account not only of harmonic NC but also of anharmonic central and NC potentials at the quantum level. Moreover, such techniques, if developed and used for the case of Schrodinger equation (SE) in this context, can as well find applications in other physical problems where the
34#
發(fā)表于 2025-3-27 11:57:30 | 只看該作者
35#
發(fā)表于 2025-3-27 16:48:53 | 只看該作者
36#
發(fā)表于 2025-3-27 21:18:58 | 只看該作者
Role and Scope of Dynamical Invariants in Physical Problems: Interpretation and Applications,ut somehow the description of physical reality limits their applications in physics and other allied sciences. In this respect while the role and the scope of the dynamical invariants for the 1D systems has been discussed at great length in the literature, it is not explored to that extent for the t
37#
發(fā)表于 2025-3-28 01:03:15 | 只看該作者
Constrained Dynamical Systems and Invariants,al restrictions (called constraints) on the canonical variables of the system. For this reason only we have freely used the Poisson brackets in the classical context and the commutators in the quantum context as and when their discussion is required. In the presence of constraints, however, some mod
38#
發(fā)表于 2025-3-28 04:58:26 | 只看該作者
Summary and Future Prospects,out. Further it may be mentioned that as far as possible all throughout, whether it is classical or quantum context, exact invariants which are polynomials in momenta are dealt with. The discussion of approximate invariants (about which enormous literature has been known for a long time now, particu
39#
發(fā)表于 2025-3-28 08:23:52 | 只看該作者
40#
發(fā)表于 2025-3-28 11:34:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
陵川县| 郴州市| 峨眉山市| 墨玉县| 商南县| 滦平县| 安龙县| 昌都县| 泌阳县| 昌黎县| 唐山市| 海盐县| 外汇| 鹿泉市| 镇原县| 芦溪县| 通海县| 贞丰县| 临颍县| 呼伦贝尔市| 巴彦县| 渑池县| 邛崃市| 安康市| 明星| 潞城市| 青铜峡市| 遂平县| 忻城县| 六枝特区| 东港市| 阳朔县| 阳泉市| 右玉县| 井研县| 淮安市| 咸阳市| 武平县| 阆中市| 老河口市| 那坡县|