找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20013rd edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Corticosteroids
41#
發(fā)表于 2025-3-28 17:10:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:29:33 | 只看該作者
The Adiabatic Invariance of the Action Variables,We shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity ... Let gravitation be neglected, and the collisions with the walls be elastic. If .. denotes the average force onto each wall, then we have
43#
發(fā)表于 2025-3-29 02:50:24 | 只看該作者
44#
發(fā)表于 2025-3-29 03:23:19 | 只看該作者
45#
發(fā)表于 2025-3-29 09:02:16 | 只看該作者
Superconvergent Perturbation Theory, KAM Theorem (Introduction),Here we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
46#
發(fā)表于 2025-3-29 12:11:48 | 只看該作者
47#
發(fā)表于 2025-3-29 17:32:52 | 只看該作者
Examples for Calculating Path Integrals,We now want to compute the kernel .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
48#
發(fā)表于 2025-3-29 22:43:24 | 只看該作者
49#
發(fā)表于 2025-3-30 00:45:28 | 只看該作者
Yichao Lu,Ruihai Dong,Barry Smythparticular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ?, then Jacobi’s principle states:
50#
發(fā)表于 2025-3-30 06:49:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼南县| 旬阳县| 彭阳县| 辛集市| 赫章县| 克山县| 南部县| 轮台县| 黄龙县| 香港 | 扶沟县| 平阳县| 普兰店市| 凤阳县| 五台县| 仙游县| 山西省| 宜宾市| 龙南县| 广平县| 富源县| 南投县| 宁南县| 万山特区| 商南县| 岑溪市| 昌邑市| 清河县| 勃利县| 徐州市| 松江区| 巢湖市| 丽水市| 刚察县| 嘉善县| 白河县| 金山区| 衡南县| 静海县| 同江市| 峡江县|