找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20175th edition Springer International Publishi

[復(fù)制鏈接]
樓主: 專家
31#
發(fā)表于 2025-3-26 23:25:08 | 只看該作者
Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space.
32#
發(fā)表于 2025-3-27 02:33:38 | 只看該作者
Action-Angle Variables,..) is the generator of a canonical transformation to new constant momenta .. (all .. are ignorable), and the new Hamiltonian depends only on the ..: . = . = .(..). Besides, the following canonical equations are valid:
33#
發(fā)表于 2025-3-27 08:38:42 | 只看該作者
Time-Independent Canonical Perturbation Theory, conservative, .∕. = 0,?and periodic in both the unperturbed and perturbed case. In addition to periodicity, we shall require the Hamilton–Jacobi equation to be separable for the unperturbed situation. The unperturbed problem ..(..) which is described by the action-angle variables .. and .. will be assumed to be solved.
34#
發(fā)表于 2025-3-27 10:27:45 | 只看該作者
Removal of Resonances,rs appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.
35#
發(fā)表于 2025-3-27 17:30:51 | 只看該作者
36#
發(fā)表于 2025-3-27 20:17:02 | 只看該作者
The KAM Theorem,..., ..) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
37#
發(fā)表于 2025-3-27 22:01:20 | 只看該作者
38#
發(fā)表于 2025-3-28 05:14:16 | 只看該作者
39#
發(fā)表于 2025-3-28 07:36:54 | 只看該作者
40#
發(fā)表于 2025-3-28 11:41:20 | 只看該作者
Reluctant Reinforcement Learning..) is the generator of a canonical transformation to new constant momenta .. (all .. are ignorable), and the new Hamiltonian depends only on the ..: . = . = .(..). Besides, the following canonical equations are valid:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松溪县| 大埔县| 屯昌县| 江都市| 大港区| 北碚区| 望奎县| 手机| 无为县| 聂拉木县| 茌平县| 织金县| 隆尧县| 东乌珠穆沁旗| 锡林浩特市| 贵港市| 林口县| 中牟县| 宜君县| 东乡族自治县| 盐边县| 同心县| 方山县| 长治县| 灵璧县| 手游| 武清区| 昆明市| 行唐县| 渝中区| 宣恩县| 荆州市| 舟山市| 高邮市| 图木舒克市| 承德市| 保德县| 科技| 防城港市| 炉霍县| 泌阳县|