找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Grant
61#
發(fā)表于 2025-4-1 04:53:20 | 只看該作者
62#
發(fā)表于 2025-4-1 07:43:38 | 只看該作者
,Poincaré Surface of Sections, Mappings,o-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the . + 1-th p
63#
發(fā)表于 2025-4-1 11:54:35 | 只看該作者
The KAM Theorem,ator .(θ., .) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲周县| 建瓯市| 绍兴县| 马边| 平南县| 邹平县| 芦溪县| 泰和县| 吉林市| 女性| 晋宁县| 烟台市| 肇州县| 广灵县| 虎林市| 那坡县| 垣曲县| 大渡口区| 湄潭县| 津市市| 衡南县| 丰台区| 沂源县| 广河县| 安庆市| 兰坪| 大关县| 武城县| 汾阳市| 陆河县| 吉林市| 含山县| 河源市| 临武县| 鸡泽县| 左权县| 永嘉县| 海丰县| 卫辉市| 奉节县| 广西|