找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Modern Branching Processes; Krishna B. Athreya,Peter Jagers Book 1997 Springer Science+Business Media New York 1997 Branchin

[復制鏈接]
樓主: Osteopenia
11#
發(fā)表于 2025-3-23 09:58:39 | 只看該作者
12#
發(fā)表于 2025-3-23 17:27:56 | 只看該作者
Incidence and Arrangement Problems,alks with drift: e.g., is the speed on Galton-Watson trees monotonic in the drift parameter? These random walks have been used in Monte-Carlo algorithms for sampling from the vertices of a tree; in general, their behavior reflects the size and regularity of the underlying tree. Random walks are rela
13#
發(fā)表于 2025-3-23 18:05:47 | 只看該作者
14#
發(fā)表于 2025-3-24 01:07:37 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:55 | 只看該作者
16#
發(fā)表于 2025-3-24 08:33:16 | 只看該作者
Stochastic Monotonicity and Branching Processes,o con-vergence in probability or a.s. of suitably normed branching processes is a law of large numbers for some independent copies of random variables. Applications to branching processes in varying environment are given.
17#
發(fā)表于 2025-3-24 11:12:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:57:44 | 只看該作者
A Criterion of Boundedness of Discrete Branching Random Walk,on of a parent. A necessary and sufficient condition is given for the random variable.to be finite. Here .. is the position of the k-th offspring in the n-th generation. The condition is stated in terms of a naturally arising linear functional equation. A number of examples are discussed, where the condition may be verified.
19#
發(fā)表于 2025-3-24 20:16:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:33:50 | 只看該作者
A Standard for Test and Diagnosis,nsions are discussed. The relationship of the results with deterministic theory is also indicated. Finally the theory developed is used to re-prove smoothly (and improve slightly) results on certain data-storage algorithms arising in computer science.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南陵县| 阿荣旗| 卢湾区| 巨野县| 屏山县| 遵义市| 织金县| 阳西县| 岑溪市| 长丰县| 巧家县| 苍南县| 石泉县| 宿松县| 德钦县| 锦州市| 宜良县| 商城县| 屏东县| 栖霞市| 峨山| 洞头县| 资阳市| 扎兰屯市| 建水县| 塘沽区| 张家港市| 綦江县| 牙克石市| 栾川县| 九寨沟县| 伊通| 宣化县| 亳州市| 黎川县| 陆良县| 九龙县| 昭通市| 都匀市| 华阴市| 商洛市|