找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Theory of Algebraic Numbers; Paulo Ribenboim Textbook 2001Latest edition Springer Science+Business Media New York 2001 algebra.a

[復(fù)制鏈接]
樓主: 租期
31#
發(fā)表于 2025-3-26 22:03:48 | 只看該作者
32#
發(fā)表于 2025-3-27 04:13:01 | 只看該作者
33#
發(fā)表于 2025-3-27 08:26:22 | 只看該作者
Commutative FieldsFor the convenience of the reader we recall some definitions and facts about commutative fields.
34#
發(fā)表于 2025-3-27 09:33:23 | 只看該作者
Residue ClassesIn this chapter, we study residue classes modulo a natural number. This leads to the consideration of groups. Therefore it is convenient to recall that if . is a finite group, the number of elements of . is called the . of ., denoted by ..
35#
發(fā)表于 2025-3-27 16:22:00 | 只看該作者
36#
發(fā)表于 2025-3-27 20:56:48 | 只看該作者
Algebraic IntegersThe arithmetic of the field of rational numbers is mainly the study of divisibility properties with respect to the ring of integers.
37#
發(fā)表于 2025-3-28 00:01:10 | 只看該作者
Integral Basis, DiscriminantWe have seen in the numerical examples of the preceding chapter that the ring of algebraic integers of a quadratic number field, and also of the cyclotomic field ?(ζ) (where ζ is a primitive .th root of unity), are free finitely generated Abelian groups.
38#
發(fā)表于 2025-3-28 05:55:02 | 只看該作者
The Decomposition of IdealsWe have shown that the ring . of algebraic integers of an algebraic number field is Noetherian and integrally closed. However, it is not true in general that . is a principal ideal domain.
39#
發(fā)表于 2025-3-28 10:18:28 | 只看該作者
The Norm and Classes of IdealsWe know already that the ring . of integers of an algebraic number field . need not be a principal ideal domain. In this chapter, we associate with every field . a numerical invariant ., which measures the extent to which . deviates from being a principal ideal domain. . will be equal to 1 if and only if . is a principal ideal domain.
40#
發(fā)表于 2025-3-28 14:12:11 | 只看該作者
Estimates for the DiscriminantIn this chapter we study the discriminant. A method of “Geometry of Numbers” is used to provide sharper estimates for the discriminant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会宁县| 敖汉旗| 桃园县| 灵璧县| 镇坪县| 绥江县| 秭归县| 比如县| 台山市| 揭西县| 中方县| 虹口区| 周至县| 宜章县| 兴和县| 留坝县| 潼关县| 济宁市| 晋州市| 筠连县| 开封县| 印江| 广东省| 谢通门县| 隆回县| 平泉县| 万盛区| 宁武县| 海阳市| 临夏市| 招远市| 安庆市| 新丰县| 泸水县| 罗城| 衡山县| 九龙坡区| 淮滨县| 绥德县| 白玉县| 韩城市|