找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Orthogonal Polynomials of a Discrete Variable; Arnold F. Nikiforov,Vasilii B. Uvarov,Sergei K. Su Textbook 1991 Springer-Verlag

[復(fù)制鏈接]
樓主: 皺紋
21#
發(fā)表于 2025-3-25 06:26:04 | 只看該作者
Manuel Rudolph,Svenja Polst,Joerg DoerrIn the approximate calculation of definite integrals and of sums of a large number of terms, numerical analysis makes extensive use of quadrature formulas of Gaussian type, which depend on properties of orthogonal polynomials.
22#
發(fā)表于 2025-3-25 08:01:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:33 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:17 | 只看該作者
Classical Orthogonal Polynomials of a Discrete Variableelations of a more general form, which can be expressed in terms of Stielties integrals . where .(.) is a monotonic nondecreasing function (usually called the distribution function). The orthogonality relation (2.0.2) is reduced to (2.0.1) in the case when the function .(.) has a derivative on (a, .
25#
發(fā)表于 2025-3-25 21:39:20 | 只看該作者
Classical Orthogonal Polynomials of a Discrete Variable on Nonuniform Lattices equation . which approximates (3.1.1) on a lattice of constant mesh . = .. After a change of independent variable, . = .(.) we can obtain a further generalization to the case when (3.1.1) is replaced by a difference equation on a class of lattices with variable mesh . = .(. + .) - .(.): . Equation
26#
發(fā)表于 2025-3-26 02:29:26 | 只看該作者
27#
發(fā)表于 2025-3-26 07:43:53 | 只看該作者
Hyperspherical HarmonicsAn important class of special functions which naturally occur in this work is constituted by .. In quantum mechanis these functions are used to construct basis functions in the .-harmonic method and in the translation-invariant model of shells thus enabling one to compute the fundamental physical ch
28#
發(fā)表于 2025-3-26 09:48:06 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:02 | 只看該作者
30#
發(fā)表于 2025-3-26 20:40:49 | 只看該作者
Bernadette O’Rourke,Sara C. Brennandringlich, um eine Kontinuit?t der wissenschaftsimmanenten Best?nde aufzudecken und künftig zu vermeiden. Es sollten daher st?rker die institutionellen Strukturen, die theoretischen Voraussetzungen und die methodologischen Instrumente in die fachhistorische Forschung einbezogen werden.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双鸭山市| 璧山县| 济宁市| 宁波市| 金堂县| 丘北县| 福海县| 儋州市| 合阳县| 遵化市| 垫江县| 桐柏县| 罗源县| 浑源县| 湘乡市| 格尔木市| 中江县| 宁武县| 苍溪县| 巴彦淖尔市| 秦皇岛市| 凌源市| 翼城县| 方城县| 紫阳县| 南通市| 南部县| 南昌市| 通辽市| 尼勒克县| 奉节县| 锡林浩特市| 尼木县| 沛县| 洪湖市| 鹤山市| 马龙县| 都安| 凭祥市| 隆昌县| 连南|