找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Mechanics with Mathematica?; Romano Antonio Textbook 20121st edition Springer Science+Business Media New York 2012 Lagrangian an

[復制鏈接]
樓主: fumble
21#
發(fā)表于 2025-3-25 06:17:08 | 只看該作者
Tensor AlgebraThis chapter contains an introduction to tensor algebra. After defining covectors and dual bases, the space of covariant two-tensor is introduced. Then, the results derived for this space are extended to the general space of the (.,.)-tensors.
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
23#
發(fā)表于 2025-3-25 14:51:32 | 只看該作者
Duality and Euclidean TensorsIn this section, we show that when .. is a Euclidean vector space, there is an isomorphism among the tensor spaces ...(..) for which .+. has a given value. In other words, we show the existence of an isomorphism between .. and ..., of isomorphisms between ..., ..., and ..., and so on.
24#
發(fā)表于 2025-3-25 18:12:42 | 只看該作者
Differentiable ManifoldsLet . be an open set of ... The real-valued function . :.→. is said to be of...(.) or a ... in ., where .≥0, if it is continuous with its partial derivatives up to the order .. In particular, a .. function in . is a continuous one.
25#
發(fā)表于 2025-3-25 23:28:13 | 只看該作者
One-Parameter Groups of DiffeomorphismsA.. on a manifold .. of class .., .>0, is a .. map
26#
發(fā)表于 2025-3-26 02:17:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:31 | 只看該作者
An Overview of Dynamical SystemsIn previous chapters, some fundamental concepts of algebra and differential geometry were presented. This chapter is devoted to an overview of dynamical systems that play a fundamental role in building mathematical models of reality.
28#
發(fā)表于 2025-3-26 11:19:11 | 只看該作者
Dynamics of a Material PointA positional force is said to be . with center . if its force law is . where . is the position vector relative to ..
29#
發(fā)表于 2025-3-26 13:23:40 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 23:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
襄城县| 杭锦旗| 铁力市| 澄城县| 梁河县| 健康| 雷山县| 西乌| 习水县| 惠安县| 通州市| 泾阳县| 微山县| 晋城| 襄城县| 甘孜县| 准格尔旗| 大厂| 任丘市| 张家界市| 韶关市| 临澧县| 陇西县| 汪清县| 田林县| 渭南市| 镇远县| 高雄县| 通榆县| 嘉禾县| 承德县| 老河口市| 蓝山县| 虞城县| 晴隆县| 天门市| 象州县| 思茅市| 历史| 凤庆县| 慈利县|