找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Mechanics; Matthew J. Benacquista,Joseph D. Romano Textbook 2018 Springer International Publishing AG 2018 Textbook Classical Me

[復制鏈接]
查看: 28794|回復: 49
樓主
發(fā)表于 2025-3-21 16:26:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classical Mechanics
編輯Matthew J. Benacquista,Joseph D. Romano
視頻videohttp://file.papertrans.cn/228/227088/227088.mp4
概述Contains an early introduction of D’Alembert’s principle, variational principles and Lagrangian & Hamiltonian mechanics.Provides an ideal blend of general concepts and methods which are then applied t
叢書名稱Undergraduate Lecture Notes in Physics
圖書封面Titlebook: Classical Mechanics;  Matthew J. Benacquista,Joseph D. Romano Textbook 2018 Springer International Publishing AG 2018 Textbook Classical Me
描述.This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book..
出版日期Textbook 2018
關(guān)鍵詞Textbook Classical Mechanics; Textbook Mechanics Physics; Analytical Mechanics textbook; Hamilton Prici
版次1
doihttps://doi.org/10.1007/978-3-319-68780-3
isbn_softcover978-3-319-68779-7
isbn_ebook978-3-319-68780-3Series ISSN 2192-4791 Series E-ISSN 2192-4805
issn_series 2192-4791
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Classical Mechanics影響因子(影響力)




書目名稱Classical Mechanics影響因子(影響力)學科排名




書目名稱Classical Mechanics網(wǎng)絡(luò)公開度




書目名稱Classical Mechanics網(wǎng)絡(luò)公開度學科排名




書目名稱Classical Mechanics被引頻次




書目名稱Classical Mechanics被引頻次學科排名




書目名稱Classical Mechanics年度引用




書目名稱Classical Mechanics年度引用學科排名




書目名稱Classical Mechanics讀者反饋




書目名稱Classical Mechanics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:41 | 只看該作者
Brooks A. Keel,Tammie K. SchalueIn this chapter, we extend our analysis of motion to rigid bodies—i.e., bodies having spatial extent, but which have a fixed shape, unchanged by any forces or torques that might act on them. We develop the kinematical framework needed for describing the complicated translational and rotational motion of a rigid body as it moves through space.
板凳
發(fā)表于 2025-3-22 00:44:23 | 只看該作者
地板
發(fā)表于 2025-3-22 06:33:23 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:44 | 只看該作者
Lisa Campo-Engelstein,Paul BurcherIn this chapter we introduce the basic concepts of special relativity—i.e., spacetime, 4-vectors, the relativistic form of Newton’s 2nd law, and the relativistic Lagrangian formulation, which could serve as the starting point for a course devoted to relativity or relativistic dynamics.
6#
發(fā)表于 2025-3-22 15:31:14 | 只看該作者
7#
發(fā)表于 2025-3-22 18:33:09 | 只看該作者
Rigid Body Kinematics,In this chapter, we extend our analysis of motion to rigid bodies—i.e., bodies having spatial extent, but which have a fixed shape, unchanged by any forces or torques that might act on them. We develop the kinematical framework needed for describing the complicated translational and rotational motion of a rigid body as it moves through space.
8#
發(fā)表于 2025-3-22 21:52:15 | 只看該作者
Small Oscillations,In this chapter, we will apply the Lagrangian formalism to the general case of coupled .-body systems perturbed from equilibrium. We will first look at the simple one-dimensional oscillator as a refresher, and then go on to develop the general formulation of the problem, applying it to solve a few simple example problems.
9#
發(fā)表于 2025-3-23 01:34:51 | 只看該作者
10#
發(fā)表于 2025-3-23 08:47:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 15:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
怀安县| 淳安县| 襄樊市| 都江堰市| 巢湖市| 阿坝县| 姜堰市| 永春县| 徐州市| 阿鲁科尔沁旗| 射阳县| 竹溪县| 乌拉特中旗| 大竹县| 准格尔旗| 吴忠市| 嘉禾县| 大名县| 南溪县| 黄骅市| 安新县| 汉寿县| 通道| 瑞安市| 汤原县| 崇阳县| 土默特左旗| 垫江县| 平乡县| 颍上县| 资中县| 盐山县| 宽城| 普兰店市| 隆化县| 龙胜| 奉节县| 泰安市| 东乡县| 景泰县| 廊坊市|