找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Fourier Analysis; Loukas Grafakos Textbook 2014Latest edition Springer Science+Business Media, LLC, part of Springer Nature 2014

[復(fù)制鏈接]
樓主: CYNIC
21#
發(fā)表于 2025-3-25 05:51:56 | 只看該作者
22#
發(fā)表于 2025-3-25 10:16:54 | 只看該作者
23#
發(fā)表于 2025-3-25 15:22:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:04:17 | 只看該作者
Romance in the East: Conclusions,int it is not clear how it manifests itself on other spaces. Square functions introduce a way to express and quantify orthogonality of the Fourier transform on .. and other function spaces. The introduction of square functions in this setting was pioneered by Littlewood and Paley, and the theory tha
25#
發(fā)表于 2025-3-25 20:32:29 | 只看該作者
https://doi.org/10.1057/978-1-137-59929-2ample, the theory of weights plays an important role in the study of boundary value problems for Laplace’s equation on Lipschitz domains. Other applications of weighted inequalities include extrapolation theory, vector-valued inequalities, and estimates for certain classes of nonlinear partial diffe
26#
發(fā)表于 2025-3-26 00:23:37 | 只看該作者
Romance in the East: Conclusions,Many quantitative properties of functions are expressed in terms of their integrability to a power. For this reason it is desirable to acquire a good understanding of spaces of functions whose modulus to a power . is integrable.
27#
發(fā)表于 2025-3-26 06:04:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:33:28 | 只看該作者
,, Spaces and Interpolation,Many quantitative properties of functions are expressed in terms of their integrability to a power. For this reason it is desirable to acquire a good understanding of spaces of functions whose modulus to a power . is integrable.
29#
發(fā)表于 2025-3-26 14:22:43 | 只看該作者
30#
發(fā)表于 2025-3-26 18:21:23 | 只看該作者
Loukas GrafakosNew edition extensively revised and updated, including 1000 different corrections and improvements in the existing text.Includes a new chapter, "Topics on Fourier series", including sections on Gibbs
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彰化市| 湛江市| 固阳县| 天长市| 唐山市| 八宿县| 泸水县| 罗田县| 浙江省| 湘乡市| 公安县| 松江区| 永定县| 苍溪县| 桓台县| 阿荣旗| 梁山县| 九江市| 淮北市| 兰坪| 农安县| 涿州市| 襄汾县| 团风县| 浦江县| 崇礼县| 巴青县| 额济纳旗| 元谋县| 同江市| 姚安县| 新闻| 扎赉特旗| 六盘水市| 溧水县| 丹江口市| 揭阳市| 波密县| 天津市| 肇源县| 遂平县|