找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Diophantine Equations; Vladimir G. Sprind?uk,Ross Talent Book 1993 Springer-Verlag Berlin Heidelberg 1993 Algebraic Number Theor

[復(fù)制鏈接]
查看: 26160|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:21:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classical Diophantine Equations
編輯Vladimir G. Sprind?uk,Ross Talent
視頻videohttp://file.papertrans.cn/228/227055/227055.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Classical Diophantine Equations;  Vladimir G. Sprind?uk,Ross Talent Book 1993 Springer-Verlag Berlin Heidelberg 1993 Algebraic Number Theor
描述The author had initiated a revision and translation of"Classical Diophantine Equations" prior to his death.Given the rapid advances intranscendence theory anddiophantine approximation over recent years, one might fearthat the present work, originally published in Russian in1982, is mostly superseded. That is not so. A certain amountofupdating had been prepared by the author himself beforehis untimely death. Some further revision was prepared byclose colleagues.The first seven chapters provide a detailed, virtuallyexhaustive, discussion of the theory of lower bounds forlinear forms in the logarithms of algebraic numbers and itsapplications to obtaining upper bounds for solutions to theeponymous classical diophantine equations. The detail mayseem stark--- the author fears that the reader may reactmuch as does the tourist onfirst seeing the centrePompidou; notwithstanding that, Sprind zuk maintainsapleasant and chatty approach, full of wise and interestingremarks. His emphases well warrant, now that the bookappears in English, close studyand emulation. In particularthose emphases allow him to devote the eighthchapter to ananalysis of the interrelationship of the class number ofalgebra
出版日期Book 1993
關(guān)鍵詞Algebraic Number Theory; Arithmetic Geometry; Class Number; Diophantine Equation; Diophantine approximat
版次1
doihttps://doi.org/10.1007/BFb0073786
isbn_softcover978-3-540-57359-3
isbn_ebook978-3-540-48083-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

書目名稱Classical Diophantine Equations影響因子(影響力)




書目名稱Classical Diophantine Equations影響因子(影響力)學(xué)科排名




書目名稱Classical Diophantine Equations網(wǎng)絡(luò)公開度




書目名稱Classical Diophantine Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classical Diophantine Equations被引頻次




書目名稱Classical Diophantine Equations被引頻次學(xué)科排名




書目名稱Classical Diophantine Equations年度引用




書目名稱Classical Diophantine Equations年度引用學(xué)科排名




書目名稱Classical Diophantine Equations讀者反饋




書目名稱Classical Diophantine Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:17:29 | 只看該作者
Reducibility of polynomials and diophantine equations,ility theorem and to describe all abelian points on algebraic curves. The methods used are quite independent of the theory of linear forms in the logarithms of algebraic numbers. and rely on the study of the arithmetic structure of sums of algebraic power series in all metrics of the field of rational numbers.
地板
發(fā)表于 2025-3-22 06:39:08 | 只看該作者
Representations of Early Byzantine Empressesprovement of Liouville‘s inequality and its generalisations; and we will see how fundamental parameters of the equation, in particular the height of the form and of the number represented by the form, influence the magnitude of the solutions.
5#
發(fā)表于 2025-3-22 11:11:39 | 只看該作者
Elizabeth’s Presence in the Jacobean Masqueolynomial having at least two simple roots represents only a finite number of powers of integers with exponents greater than 2. We also give an analysis of S-integer solutions of the Catalan equation. *** DIRECT SUPPORT *** A00I6B17 00003
6#
發(fā)表于 2025-3-22 13:22:03 | 只看該作者
https://doi.org/10.1057/9780230307261ility theorem and to describe all abelian points on algebraic curves. The methods used are quite independent of the theory of linear forms in the logarithms of algebraic numbers. and rely on the study of the arithmetic structure of sums of algebraic power series in all metrics of the field of rational numbers.
7#
發(fā)表于 2025-3-22 19:34:00 | 只看該作者
8#
發(fā)表于 2025-3-23 01:09:23 | 只看該作者
9#
發(fā)表于 2025-3-23 04:16:16 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井陉县| 太湖县| 徐水县| 平定县| 嵊泗县| 施秉县| 大名县| 新和县| 时尚| 桃源县| 扎囊县| 油尖旺区| 腾冲县| 泗洪县| 涡阳县| 徐汇区| 宁乡县| 岱山县| 吉首市| 彩票| 曲松县| 安西县| 大田县| 咸阳市| 明水县| 噶尔县| 巴彦县| 三穗县| 札达县| 从化市| 雅安市| 嘉兴市| 临高县| 天津市| 永川市| 嘉峪关市| 商城县| 灵台县| 朔州市| 永修县| 泾川县|