找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classic Papers in Combinatorics; Ira Gessel,Gian-Carlo Rota Book 19871st edition Birkh?user Boston 1987 Acyclic orientations of graphs.Com

[復制鏈接]
樓主: affected
21#
發(fā)表于 2025-3-25 03:43:53 | 只看該作者
Jean-Paul Fitoussi,Jacques Le CacheuxThe problem discussed in this paper was formulated by T. Harris as follows:.“Consider a rail network connecting two cities by way of a number of intermediate cities, where each link of the network has a number assigned to it representing its capacity. Assuming a steady state condition, find a maximal flow from one given city to the other.”
22#
發(fā)表于 2025-3-25 10:26:31 | 只看該作者
Jean-Paul Fitoussi,Jacques Le CacheuxThe theorem to be proved in this note is a generalization of a well-known combinatorial theorem of P. Hall, [.].
23#
發(fā)表于 2025-3-25 15:28:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:22:16 | 只看該作者
25#
發(fā)表于 2025-3-25 23:09:54 | 只看該作者
On the Abstract Properties of Linear Dependence1,Let C. , C. ,· · · ,C. be the columns of a matrix .. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold
26#
發(fā)表于 2025-3-26 02:47:25 | 只看該作者
27#
發(fā)表于 2025-3-26 04:45:48 | 只看該作者
28#
發(fā)表于 2025-3-26 09:32:39 | 只看該作者
A Decomposition Theorem for Partially Ordered Sets,Otherwise . and . are .. A subset . of . is . if every two distinct elements of . are non-comparable. . is . if it contains two distinct elements which are comparable. A subset . of . is a . if every two of its elements are comparable.
29#
發(fā)表于 2025-3-26 15:14:07 | 只看該作者
30#
發(fā)表于 2025-3-26 19:24:24 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
司法| 张家口市| 蛟河市| 仪陇县| 延津县| 沙雅县| 平遥县| 留坝县| 稷山县| 炎陵县| 深州市| 昌乐县| 大宁县| 沽源县| 应城市| 斗六市| 文水县| 宜丰县| 平利县| 如东县| 东兰县| 临洮县| 多伦县| 南通市| 布尔津县| 余庆县| 鸡泽县| 五大连池市| 临泉县| 宜兴市| 瑞昌市| 色达县| 都兰县| 珲春市| 临高县| 佛山市| 林周县| 仁怀市| 江门市| 长葛市| 临夏市|