找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Linear Operators; Israel Gohberg,Marinus A. Kaashoek,Seymour Goldber Book 1993 Birkh?user Verlag 1993 Mathematik.complex analys

[復制鏈接]
樓主: 到來
21#
發(fā)表于 2025-3-25 04:18:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:33 | 只看該作者
23#
發(fā)表于 2025-3-25 13:15:37 | 只看該作者
Toeplitz Operators Defined by Piecewise Continuous Matrix Functionss with a finite number of discontinuities. Sums and products of such operators are also considered. The chapter provides the necessary tools to develop the theory of Banach algebras generated by Toeplitz operators defined by piecewise continuous functions, which will be treated in Chapter XXXII.
24#
發(fā)表于 2025-3-25 17:05:38 | 只看該作者
Dilation Theoryrs. The minimal isometric and minimal unitary dilations of a given contraction are to a large extent unique, which implies that those operators are useful instruments for the analysis of contractions. In this chapter we also prove the commutant lifting theorem and present some of its applications to interpolation problems.
25#
發(fā)表于 2025-3-25 22:37:21 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:24:53 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:44 | 只看該作者
29#
發(fā)表于 2025-3-26 16:40:39 | 只看該作者
Michael G. Merideth,Michael K. Reiters with a finite number of discontinuities. Sums and products of such operators are also considered. The chapter provides the necessary tools to develop the theory of Banach algebras generated by Toeplitz operators defined by piecewise continuous functions, which will be treated in Chapter XXXII.
30#
發(fā)表于 2025-3-26 20:16:32 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 22:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宣城市| 枣强县| 龙门县| 景泰县| 达孜县| 蓝山县| 会东县| 施甸县| 新津县| 界首市| 洛隆县| 疏勒县| 武汉市| 宁安市| 米泉市| 玉林市| 资溪县| 呼伦贝尔市| 平凉市| 梧州市| 奈曼旗| 德钦县| 阳高县| 罗定市| 新巴尔虎右旗| 玉屏| 井冈山市| 武乡县| 黔西县| 庆安县| 苗栗县| 铜山县| 湘潭县| 叶城县| 屏边| 杭锦后旗| 定安县| 和顺县| 新昌县| 辽中县| 五河县|