找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Good Noetherian Rings; Cristodor Ionescu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: Sentry
21#
發(fā)表于 2025-3-25 03:47:47 | 只看該作者
Christina M. Comty,Fred L. ShapiroF-finite rings, rings that were long ago proved to be excellent. In order to include Scheja-Storch results about excellent rings, we chose to include the main features of the theory of universally finite module of differentials.
22#
發(fā)表于 2025-3-25 10:01:10 | 只看該作者
Book 2023mine some of the most important topics in the area, including? Nagata, F-finite and excellent?rings, Bertini’s Theorem, and Cohen factorizations. Of particular interest is the presentation of Popescu’s Theorem on Neron Desingularization and the structure of regular morphisms, with a complete proof.?
23#
發(fā)表于 2025-3-25 11:47:27 | 只看該作者
Replacement of Renal Function by Dialysisrm of the second Theorem of Bertini is used in the proof, we decided to present this result that is important in many places in Commutative Algebra and Algebraic Geometry. This chapter uses notions and results from Algebraic Geometry. They are collected in Sect. 4.1.
24#
發(fā)表于 2025-3-25 18:15:48 | 只看該作者
Localization and Lifting Theorems,rm of the second Theorem of Bertini is used in the proof, we decided to present this result that is important in many places in Commutative Algebra and Algebraic Geometry. This chapter uses notions and results from Algebraic Geometry. They are collected in Sect. 4.1.
25#
發(fā)表于 2025-3-25 21:23:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:25:11 | 只看該作者
Excellent Rings and Regular Morphisms,rian rings, a topic that always proved to be quite subtle. Then we focus on criteria about regular morphisms and excellent rings. One can find here the famous André theorem about the localization of formal smoothness, theorem that is also the starting point for Chap. .. There are many results about
28#
發(fā)表于 2025-3-26 09:03:15 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:32 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平远县| 长宁区| 江城| 抚顺县| 辽宁省| 来凤县| 泸西县| 揭西县| 达州市| 梁平县| 九龙坡区| 旬阳县| 钟祥市| 定边县| 海城市| 丹巴县| 日照市| 重庆市| 瓦房店市| 新平| 方正县| 岳西县| 应城市| 大安市| 鹤山市| 板桥市| 中西区| 邮箱| 南汇区| 应城市| 吴江市| 西贡区| 镇原县| 霍山县| 梁山县| 佛山市| 晋江市| 威信县| 桂东县| 晋中市| 紫阳县|