找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Field Theory; From Theory to Pract Georges Gras Book 2003 Springer-Verlag Berlin Heidelberg 2003 Abelian closure.Class field theory.a

[復(fù)制鏈接]
樓主: Pierce
21#
發(fā)表于 2025-3-25 05:09:27 | 只看該作者
Invariant Class Groups in ,-Ramification Genus Theory,iori completely different, and one usually studies the corresponding invariants of . using several means. This chapter explains the two classical approaches: invariant classes formulas and genus theory.
22#
發(fā)表于 2025-3-25 07:38:16 | 只看該作者
https://doi.org/10.1007/978-1-349-11098-8This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
23#
發(fā)表于 2025-3-25 14:58:06 | 只看該作者
Basic Tools and Notations,This chapter gives the definitions of the objects which will be used throughout this book. We are thus led to give the main general notations.
24#
發(fā)表于 2025-3-25 16:30:46 | 只看該作者
Reciprocity Maps Existence Theorems,nd commented so as to be used. This is so true that, as we will see several times, a classical proof consists in . local class field theory from global class field theory, as was initiated by Hasse and Schmidt in 1930, and in particular to base some local computations on global arguments (a typical
25#
發(fā)表于 2025-3-25 21:06:08 | 只看該作者
,Abelian Extensions with Restricted Ramification — Abelian Closure,cesses, will enable us to understand the structure of the maximal abelian extension of a number field . (Section 4 of the present chapter). Indeed, since any finite abelian extension of . is contained in a ray class field .(m)., we have ., where m ranges in the set of moduli of ..
26#
發(fā)表于 2025-3-26 02:23:35 | 只看該作者
27#
發(fā)表于 2025-3-26 04:54:54 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:55 | 只看該作者
7樓
29#
發(fā)表于 2025-3-26 12:40:39 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 18:35:38 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
公主岭市| 江门市| 西安市| 金平| 蓬溪县| 巴中市| 屏东市| 津南区| 齐齐哈尔市| 桂平市| 南雄市| 孟州市| 浦江县| 湖南省| 奉新县| 博野县| 建水县| 仙游县| 梅州市| 抚宁县| 肃宁县| 久治县| 龙口市| 共和县| 日照市| 乐至县| 西乌珠穆沁旗| SHOW| 玉山县| 卓尼县| 响水县| 正安县| 西藏| 南涧| 焦作市| 永州市| 沙坪坝区| 鄂尔多斯市| 乌恰县| 繁昌县| 鹿泉市|