找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 15th China National Maosong Sun,Xuan

[復(fù)制鏈接]
查看: 7747|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:17:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D
副標(biāo)題15th China National
編輯Maosong Sun,Xuanjing Huang,Yang Liu
視頻videohttp://file.papertrans.cn/226/225766/225766.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 15th China National  Maosong Sun,Xuan
描述This book constitutes the proceedings of the 15th China National Conference on Computational Linguistics, CCL 2016, and the 4th International Symposium on Natural Language Processing Based on Naturally Annotated Big Data, NLP-NABD 2016, held in Yantai City, China, in October 2016.?.The 29 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 85 submissions. They were organized in topical sections named: semantics; machine translation; multilinguality in NLP; knowledge graph and information extraction; linguistic resource annotation and evaluation; information retrieval and question answering; text classification and summarization; social computing and sentiment analysis; and NLP applications..
出版日期Conference proceedings 2016
關(guān)鍵詞information extraction; lexical semantics; machine learning; machine translation; Web mining; active lear
版次1
doihttps://doi.org/10.1007/978-3-319-47674-2
isbn_softcover978-3-319-47673-5
isbn_ebook978-3-319-47674-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D影響因子(影響力)




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D影響因子(影響力)學(xué)科排名




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D網(wǎng)絡(luò)公開度




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D被引頻次




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D被引頻次學(xué)科排名




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D年度引用




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D年度引用學(xué)科排名




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D讀者反饋




書目名稱Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:08:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:48:21 | 只看該作者
地板
發(fā)表于 2025-3-22 07:41:41 | 只看該作者
János Tóth,Attila László Nagy,Dávid Pappage model by 41?% and 30?% respectively when comparing model trained on the corpus without processing. The proposed approach significantly improves the performance of Mongolian language model and greatly enhances the accuracy of Mongolian speech recognition.
5#
發(fā)表于 2025-3-22 12:45:24 | 只看該作者
6#
發(fā)表于 2025-3-22 14:33:33 | 只看該作者
Lisha Yang,Ji Su,Xiaokun Yang,Hongfei Lino used to filter the illogical label sequences. The experimental results conducted on the BioCreative II GM corpus show that our system can achieve an F-score of 88.61?%, which outperforms CRF models using the complex hand-designed features and is 6.74?% higher than RNNs.
7#
發(fā)表于 2025-3-22 17:31:10 | 只看該作者
Sentence Alignment Method Based on Maximum Entropy Model Using Anchor Sentenceserent weights to characters in different position based on the contribution to align sentences. In the experiment performed on ., the precision and recall of the proposed method reaches 95.9?% and 95.6?% respectively, which outperforms other sentence alignment methods significantly.
8#
發(fā)表于 2025-3-22 21:12:00 | 只看該作者
9#
發(fā)表于 2025-3-23 05:19:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:20:54 | 只看該作者
Recognizing Biomedical Named Entities Based on the Sentence Vector/Twin Word Embeddings Conditioned o used to filter the illogical label sequences. The experimental results conducted on the BioCreative II GM corpus show that our system can achieve an F-score of 88.61?%, which outperforms CRF models using the complex hand-designed features and is 6.74?% higher than RNNs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渝中区| 府谷县| 临沭县| 萨嘎县| 融水| 南昌市| 石屏县| 肥乡县| 曲阳县| 莫力| 杂多县| 郴州市| 原平市| 潮州市| 清徐县| 随州市| 车致| 德阳市| 瓦房店市| 镇远县| 开封县| 祁连县| 肃宁县| 张家界市| 巴林左旗| 四川省| 镇坪县| 尼木县| 南郑县| 金堂县| 宜都市| 惠来县| 鲁山县| 石台县| 定南县| 岳池县| 雷波县| 临泽县| 深水埗区| 唐山市| 东城区|