找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese ComputationalLinguistics; 20th China National Sheng Li,Maosong Sun,Gaoqi Rao Conference proceedings 2021 Springer Nature Switzerla

[復(fù)制鏈接]
樓主: hearken
31#
發(fā)表于 2025-3-26 22:25:17 | 只看該作者
From Learning-to-Match to Learning-to-Discriminate: Global Prototype Learning for Few-shot Relation on classification. Most previous works on few-shot relation classification are based on learning-to-match paradigms, which focus on learning an effective universal matcher between the query and . target class prototype based on inner-class support sets. However, the learning-to-match paradigm focuse
32#
發(fā)表于 2025-3-27 03:34:14 | 只看該作者
33#
發(fā)表于 2025-3-27 09:12:50 | 只看該作者
Topic Knowledge Acquisition and Utilization for Machine Reading Comprehension in Social Media Domains clustering. A group of people tend to express their opinion or report news around one topic. Having realized this, we propose a novel method that utilizes the topic knowledge implied by the clustered messages to aid in the comprehension of those short messages. The experiments on TweetQA datasets demonstrate the effectiveness of our method.
34#
發(fā)表于 2025-3-27 12:42:46 | 只看該作者
Conference proceedings 2021s, Text Generation and Summarization, Information Retrieval, Dialogue and Question Answering, Linguistics and Cognitive Science, Language Resource and Evaluation, Knowledge Graph and Information Extraction, and NLP Applications. .
35#
發(fā)表于 2025-3-27 16:11:58 | 只看該作者
0302-9743 nt Analysis, Text Generation and Summarization, Information Retrieval, Dialogue and Question Answering, Linguistics and Cognitive Science, Language Resource and Evaluation, Knowledge Graph and Information Extraction, and NLP Applications. .978-3-030-84185-0978-3-030-84186-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
36#
發(fā)表于 2025-3-27 21:35:16 | 只看該作者
37#
發(fā)表于 2025-3-27 23:39:55 | 只看該作者
38#
發(fā)表于 2025-3-28 05:31:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:35:07 | 只看該作者
Reducing Length Bias in Scoring Neural Machine Translation via a Causal Inference Methodupervised, which is adaptive to any NMT model and test dataset. We conduct the experiments on three translation tasks with different scales of datasets. Experimental results and further analyses show that our approaches gain comparable performance with the empirical baseline methods.
40#
發(fā)表于 2025-3-28 12:58:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上林县| 南乐县| 黄山市| 陕西省| 北辰区| 衡阳县| 盖州市| 修武县| 龙南县| 吉首市| 绥德县| 克拉玛依市| 张家川| 安塞县| 安阳市| 抚顺县| 桂平市| 林甸县| 平谷区| 衡阳县| 合水县| 温州市| 西青区| 界首市| 六盘水市| 涟源市| 汾西县| 若尔盖县| 滁州市| 长岛县| 印江| 南平市| 民乐县| 沂南县| 普洱| 宁蒗| 黎城县| 鲁山县| 漯河市| 成武县| 沙雅县|