找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chern-Simons Theory and Equivariant Factorization Algebras; Corina Keller Book 2019 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: 淹沒(méi)
11#
發(fā)表于 2025-3-23 12:52:42 | 只看該作者
Principal Bundles and Gauge Theory,al finite-dimensional vector space, then . : M → . is a vector field. More generally, we can consider a family of spaces {.}.?. varying over the points on M, that is .(.) ? . for each . ? .. A field . is then understood as a . from the spacetime manifold into the bundle of spaces over .. This is exa
12#
發(fā)表于 2025-3-23 16:13:19 | 只看該作者
-Algebras and Derived Formal Moduli Problems, space, comprising the study of ., which are spaces parameterizing equivalence classes of structures. With a . we thus mean the infinitesimal description of a moduli space, capturing the local structure around a given point. In this chapter we first address the classical theory of algebraic deformat
13#
發(fā)表于 2025-3-23 18:23:44 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:18 | 只看該作者
15#
發(fā)表于 2025-3-24 05:24:42 | 只看該作者
Chern-Simons Theory and Equivariant Factorization Algebras978-3-658-25338-7Series ISSN 2625-3577 Series E-ISSN 2625-3615
16#
發(fā)表于 2025-3-24 07:21:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:28:05 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:41:04 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:25 | 只看該作者
Factorization Algebras,n a precise way, by its behavior on smaller open sets. Since there is a close relation between prefactorization algebras and precosheaves, we can think of this local-to-global property as the analog of the gluing axiom for sheaves.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜阳县| 酒泉市| 阳高县| 白水县| 兴海县| 沽源县| 郴州市| 松潘县| 芦溪县| 巫山县| 太谷县| 色达县| 安图县| 西乡县| 福建省| 治多县| 桦甸市| 长白| 廉江市| 湖州市| 和田县| 双峰县| 五原县| 监利县| 凯里市| 昂仁县| 赤峰市| 犍为县| 宜州市| 锦屏县| 邓州市| 临夏市| 曲阳县| 仙居县| 巴东县| 兴文县| 福州市| 新巴尔虎右旗| 南皮县| 光泽县| 玉山县|