找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Charge and Spin Transport in Disordered Graphene-Based Materials; Dinh Van Tuan Book 2016 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
樓主: 自治
11#
發(fā)表于 2025-3-23 11:47:31 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8ter system where the charge carrier dynamics can be described as quasi-relativistic particles with zero effective carrier mass and the transport properties are governed by the Dirac equation, whereby their mobilities have unprecedentedly large values.
12#
發(fā)表于 2025-3-23 14:55:31 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8d density, etc. However, as with most other materials, defects are unavoidable during the preparation of graphene and can play a key role in many observables, and particularly electronic properties. The purpose of this chapter is to discuss the transport properties of realistic graphene with the inc
13#
發(fā)表于 2025-3-23 19:44:23 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:00:01 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8Graphene has received a great attention since it was first isolated by Nobel Laureates Konstantin Novoselov and Andre K. Geim in 2004.
17#
發(fā)表于 2025-3-24 13:39:35 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8Quantum simulations are very important tools to study transport phenomena in the nanoscale. There are two numerical approaches for quantum transport simulations at the present, one is the widely used non-equilibrium Green’s function (NEGF) method, the other is the Kubo-Greenwood method.
18#
發(fā)表于 2025-3-24 16:31:06 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8In this thesis, I have presented the charge transport of disordered graphene as well as explained the fast spin relaxation in graphene which is one of the most interesting topics in graphene at the moment.
19#
發(fā)表于 2025-3-24 20:44:36 | 只看該作者
Electronic and Transport Properties of Graphene,Graphene has received a great attention since it was first isolated by Nobel Laureates Konstantin Novoselov and Andre K. Geim in 2004.
20#
發(fā)表于 2025-3-25 02:24:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑龙江省| 仪征市| 西乡县| 江门市| 阿荣旗| 镇安县| 平罗县| 康保县| 开远市| 祁阳县| 泸州市| 衡山县| 郧西县| 鸡西市| 弋阳县| 鹤山市| 平顺县| 喀喇| 大荔县| 丹江口市| 广德县| 苏尼特左旗| 花垣县| 黑河市| 南宫市| 乃东县| 尤溪县| 长子县| 白朗县| 安图县| 内黄县| 板桥市| 南充市| 肇东市| 淮滨县| 巴塘县| 乌拉特后旗| 宜兴市| 修水县| 两当县| 吉木乃县|