找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Characters and Blocks of Solvable Groups; A User’s Guide to La James Cossey,Yong Yang Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: 租期
21#
發(fā)表于 2025-3-25 06:31:27 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:40 | 只看該作者
23#
發(fā)表于 2025-3-25 15:37:34 | 只看該作者
https://doi.org/10.1007/978-3-031-50706-9Solvable Groups; Character Theory; Blocks of Finite Groups; Representations of Finite Groups; Large Orbi
24#
發(fā)表于 2025-3-25 16:26:52 | 只看該作者
978-3-031-50708-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
25#
發(fā)表于 2025-3-25 21:37:01 | 只看該作者
Regular Orbits in the Quasiprimitve Casesee our first of several important results bounding the size of certain fixed point subspaces, and we see how to use those bounds to generate regular orbits. We end with a discussion of the work of the second author that classifies the solvable primitive groups that do not have regular orbits.
26#
發(fā)表于 2025-3-26 02:31:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:53:56 | 只看該作者
28#
發(fā)表于 2025-3-26 09:00:30 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:47 | 只看該作者
F. Hoffmann,B. Weigel,S. CoenenIn this chapter we cover some of the fundamentals of module theory we will need. Many results are included without proof. However, we do include a detailed proof of a result of Gaschütz which will be used throughout.
30#
發(fā)表于 2025-3-26 20:23:19 | 只看該作者
https://doi.org/10.1007/978-3-642-10789-4Here we look at extraspecial groups, their representations, and their connection to symplectic actions. We discuss in some detail Hall’s important result that characterizes p-groups for which every abelian characteristic subgroup is cyclic. These results will allow us to begin our study of quasiprimitive groups in the next chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西昌市| 上饶县| 桐城市| 嫩江县| 武隆县| 留坝县| 永靖县| 通化县| 新龙县| 遂平县| 唐海县| 龙州县| 宜都市| 东宁县| 盐池县| 民勤县| 大埔县| 岱山县| 高台县| 抚州市| 拜城县| 汉川市| 关岭| 三明市| 大名县| 封开县| 济阳县| 新巴尔虎右旗| 凌云县| 安达市| 湘潭市| 和平区| 即墨市| 株洲市| 安新县| 南陵县| 固镇县| 明水县| 胶南市| 吉安县| 会昌县|