找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Maps; Dynamics, Fractals, Goong Chen,Yu Huang Book 2011 Springer Nature Switzerland AG 2011

[復(fù)制鏈接]
查看: 24822|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:46:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Chaotic Maps
副標(biāo)題Dynamics, Fractals,
編輯Goong Chen,Yu Huang
視頻videohttp://file.papertrans.cn/224/223928/223928.mp4
叢書(shū)名稱Synthesis Lectures on Mathematics & Statistics
圖書(shū)封面Titlebook: Chaotic Maps; Dynamics, Fractals,  Goong Chen,Yu Huang Book 2011 Springer Nature Switzerland AG 2011
描述This book consists of lecture notes for a semester-long introductory graduate course on dynamical systems and chaos taught by the authors at Texas A&M University and Zhongshan University, China. There are ten chapters in the main body of the book, covering an elementary theory of chaotic maps in finite-dimensional spaces. The topics include one-dimensional dynamical systems (interval maps), bifurcations, general topological, symbolic dynamical systems, fractals and a class of infinite-dimensional dynamical systems which are induced by interval maps, plus rapid fluctuations of chaotic maps as a new viewpoint developed by the authors in recent years. Two appendices are also provided in order to ease the transitions for the readership from discrete-time dynamical systems to continuous-time dynamical systems, governed by ordinary and partial differential equations. Table of Contents: Simple Interval Maps and Their Iterations / Total Variations of Iterates of Maps / Ordering among Periods: The Sharkovski Theorem / Bifurcation Theorems for Maps / Homoclinicity. Lyapunoff Exponents / Symbolic Dynamics, Conjugacy and Shift Invariant Sets / The Smale Horseshoe / Fractals / Rapid Fluctuation
出版日期Book 2011
版次1
doihttps://doi.org/10.1007/978-3-031-02403-0
isbn_softcover978-3-031-01275-4
isbn_ebook978-3-031-02403-0Series ISSN 1938-1743 Series E-ISSN 1938-1751
issn_series 1938-1743
copyrightSpringer Nature Switzerland AG 2011
The information of publication is updating

書(shū)目名稱Chaotic Maps影響因子(影響力)




書(shū)目名稱Chaotic Maps影響因子(影響力)學(xué)科排名




書(shū)目名稱Chaotic Maps網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Chaotic Maps網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Chaotic Maps被引頻次




書(shū)目名稱Chaotic Maps被引頻次學(xué)科排名




書(shū)目名稱Chaotic Maps年度引用




書(shū)目名稱Chaotic Maps年度引用學(xué)科排名




書(shū)目名稱Chaotic Maps讀者反饋




書(shū)目名稱Chaotic Maps讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:30:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:43:17 | 只看該作者
The Smale Horseshoe, chapter, we present the famous Smale horseshoe and show that it has a shift invariant set with respect to the two-sided shift. We first introduce the standard Smale horseshoe and then discuss the general case.
地板
發(fā)表于 2025-3-22 08:28:39 | 只看該作者
5#
發(fā)表于 2025-3-22 11:58:55 | 只看該作者
6#
發(fā)表于 2025-3-22 16:18:53 | 只看該作者
Inductive Properties of Electric Circuits,y, leading to the research and development of . which is at the forefront of science and technology of the 21st Century. Chaos is an extreme form of nonlinear dynamical phenomena. But what exactly is . This is the main focus of this book.
7#
發(fā)表于 2025-3-22 20:51:15 | 只看該作者
8#
發(fā)表于 2025-3-23 00:16:38 | 只看該作者
9#
發(fā)表于 2025-3-23 01:54:24 | 只看該作者
10#
發(fā)表于 2025-3-23 07:37:47 | 只看該作者
Power Package Typical Assembly Process,Bifurcation means “branching “. It is a major nonlinear phenomenon. Bifurcation happens when one or several important system parameters change values in a transition process. After a bifurcation, the system’s behavior changes. For example, new equilibrium states emerge, with a different behavior, especially that related to stability.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 08:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荥阳市| 漳浦县| 东港市| 高雄县| 芜湖市| 彩票| 都江堰市| 炉霍县| 那坡县| 五家渠市| 蒲江县| 余干县| 尼勒克县| 遵化市| 龙海市| 德化县| 韩城市| 佳木斯市| 雷山县| 彩票| 称多县| 宁明县| 靖远县| 南华县| 壤塘县| 梅州市| 金乡县| 承德县| 大兴区| 石狮市| 宁海县| 改则县| 高淳县| 武夷山市| 富民县| 渭源县| 红桥区| 九台市| 铅山县| 淮安市| 青岛市|