找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas; Proceedings of a Wor Sadruddin Benkadda,George M. Zaslavsky Conference procee

[復(fù)制鏈接]
樓主: Disperse
21#
發(fā)表于 2025-3-25 03:53:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:29:52 | 只看該作者
23#
發(fā)表于 2025-3-25 13:59:32 | 只看該作者
Dynamical aspects of photon acceleration,ing by an electron plasma wave and a model for photon Fermi acceleration will be presented. Our approach will be based on the Hamiltonian canonical equations for photons. A covariant Hamiltonian description will also be discussed.
24#
發(fā)表于 2025-3-25 15:49:12 | 只看該作者
https://doi.org/10.1007/978-3-531-90062-9onstructed and the stochastic layer width is estimated. Numerical simulations have been performed and it was found that there exists a fine structure of the coherent core boundary layer, which consists of islands and subislands. We also have found the stickiness of the advected particle to the boundaries of vortex cores.
25#
發(fā)表于 2025-3-25 22:20:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:31:10 | 只看該作者
,Suivi et traitement d’une hémochromatose,e space of these traps, and the exponents of the characteristic long time tails associated with them are determined. Computational procedures for the anomalous exponents and intermediate asymptotics are discussed in many details.
27#
發(fā)表于 2025-3-26 07:34:20 | 只看該作者
28#
發(fā)表于 2025-3-26 12:18:50 | 只看該作者
Statistical mechanics of a self gravitating gas,tinuum Vlasov mean field equation. It is argued that solutions of these Vlasov-Newton equations have finite time singularities with spherical symmetry, and focusing of the energy with no mass, like focusing NLS in 3D.
29#
發(fā)表于 2025-3-26 15:10:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:48:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深泽县| 吕梁市| 绿春县| 阿克苏市| 紫云| 云霄县| 将乐县| 贡嘎县| 都匀市| 北流市| 牡丹江市| 宁明县| 桓台县| 阜宁县| 马关县| 广饶县| 平顶山市| 武邑县| 正阳县| 大同县| 孟州市| 叶城县| 四平市| 长垣县| 永善县| 阿拉善盟| 六盘水市| 泰兴市| 兰溪市| 当阳市| 汉阴县| 右玉县| 克东县| 宜兴市| 南昌市| 桦南县| 贵州省| 图木舒克市| 神农架林区| 称多县| 台南市|