找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos, Fractals, and Noise; Stochastic Aspects o Andrzej Lasota,Michael C. Mackey Textbook 1994Latest edition Springer Science+Business Med

[復(fù)制鏈接]
樓主: VEER
31#
發(fā)表于 2025-3-27 00:31:52 | 只看該作者
Looking Beyond Form: Foreman, Kirby, Wilson, space. To do this, we adopt a strictly probabilistic point of view, not embedding the deterministic system . in a continuous time process, but rather embedding its Frobenius-Perron operator ..... that acts on .. functions. The result of this embedding is an abstract form of the Boltzmann equation.
32#
發(fā)表于 2025-3-27 02:27:34 | 只看該作者
33#
發(fā)表于 2025-3-27 08:35:50 | 只看該作者
Modern Dance and the Modernist Work,ence of following a random distribution of initial states, which, in turn, led to a development of the notion of the Frobenius-Perron operator and an examination of its properties as a means of studying the asymptotic properties of flows of densities. The second resulted from the random application
34#
發(fā)表于 2025-3-27 12:04:09 | 只看該作者
https://doi.org/10.1007/978-1-349-23334-2 and to a derivation of the forward Fokker-Planck equation, describing the evolution of densities for these systems. We close with some results concerning the asymptotic stability of solutions to the Fokker-Planck equation.
35#
發(fā)表于 2025-3-27 14:10:12 | 只看該作者
From Postmodern Style to Performance,better described if we use a more general notion than a density, namely, a measure. In fact, the sequences (or flows) of measures generated by dynamical systems simultaneously generalize the notion of trajectories and the sequences (or flows) of densities. They are of particular value in studying fr
36#
發(fā)表于 2025-3-27 19:29:00 | 只看該作者
Studying Chaos with Densities,ormations can display. These three levels are known as ergodicity, mixing, and exactness. The central theme of the chapter is to show the utility of the Frobenius–Perron and Koopman operators in the study of these behaviors.
37#
發(fā)表于 2025-3-28 00:17:00 | 只看該作者
The Behavior of Transformations on Intervals and Manifolds,e of the material developed in Chapter 5 Although results are often stated in terms of the asymptotic stability of {..}, where . is a Frobenius—Perron operator corresponding to a transformation ., remember that, according to Proposition 5.6.2, . is exact when {..} is asymptotically stable and . is measure preserving.
38#
發(fā)表于 2025-3-28 04:30:30 | 只看該作者
Stochastic Perturbation of Continuous Time Systems, and to a derivation of the forward Fokker-Planck equation, describing the evolution of densities for these systems. We close with some results concerning the asymptotic stability of solutions to the Fokker-Planck equation.
39#
發(fā)表于 2025-3-28 08:21:28 | 只看該作者
40#
發(fā)表于 2025-3-28 13:50:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
监利县| 米泉市| 阿鲁科尔沁旗| 凤冈县| 横峰县| 侯马市| 宁晋县| 滦平县| 托克逊县| 周至县| 郸城县| 喀喇沁旗| 绥芬河市| 东辽县| 通道| 双桥区| 溧阳市| 五峰| 新津县| 淮滨县| 屯门区| 乐安县| 万荣县| 博白县| 长阳| 台北市| 当阳市| 张家界市| 肥城市| 湄潭县| 临沧市| 城步| 鄯善县| 泰来县| 湖北省| 南充市| 城固县| 镇安县| 苏州市| 鄂托克前旗| 托克逊县|