找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Discrete Dynamical Systems; A Visual Introductio Ralph H. Abraham,Laura Gardini,Christian Mira Book 1997 Springer Science+Business

[復(fù)制鏈接]
樓主: Entangle
21#
發(fā)表于 2025-3-25 04:26:52 | 只看該作者
Chaotic Contact BifurcationsChaotic contact bifurcations involve a chaotic attractor. This is the pinnacle of our subject. Here we proceed with a 1D introduction, and a 2D introduction, before analyzing the exemplary bifurcation sequence.
22#
發(fā)表于 2025-3-25 08:05:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:31 | 只看該作者
Fractal Boundariesrcations, which we have encountered already in Chapter 5, with a sequence of hand drawings. Then we will go on to an exemplary bifurcation sequence with computer graphics, in which the fractal implications of these contact events for the boundaries become clear.
25#
發(fā)表于 2025-3-25 21:16:46 | 只看該作者
Conclusiontractors, basins, critical sets, bifurcations, and so on — may be understood in the 1D context, as we have indicated here and there; but perhaps they are clearer in 2D. Also, the 2D versions may admit a more straightforward generalization to 3D and higher dimensions.
26#
發(fā)表于 2025-3-26 00:57:56 | 只看該作者
Book 1997 books by Heinz-Otto Peigen and his co-workers. Now, the new theory of critical curves developed byMira and his students and Toulouse provide a unique opportunity to explain the basic concepts of the theory of chaos and bifurcations for discete dynamical systems in two-dimensions. The materials in t
27#
發(fā)表于 2025-3-26 07:01:29 | 只看該作者
28#
發(fā)表于 2025-3-26 12:00:12 | 只看該作者
Book 1997systems), cascades (discrete, reversible, dynamical systems), and semi-cascades (discrete, irreversible, dynamical systems). Flows and semi-cascades are the classical systems iuntroduced by Poincare a centry ago, and are the subject of the extensively illustrated book: "Dynamics: The Geometry of Beh
29#
發(fā)表于 2025-3-26 14:17:11 | 只看該作者
30#
發(fā)表于 2025-3-26 20:51:35 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 14:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漠河县| 金山区| 河池市| 阿拉善盟| 桑日县| 南和县| 盐亭县| 唐河县| 湖北省| 沐川县| 明水县| 庆阳市| 许昌市| 崇文区| 内黄县| 贺兰县| 禹城市| 改则县| 克东县| 荔波县| 宣化县| 贵溪市| 治多县| 迁西县| 普陀区| 桂东县| 淳化县| 保定市| 扎赉特旗| 开封县| 尼玛县| 台北县| 西丰县| 宁德市| 中山市| 正安县| 宁陕县| 弥渡县| 金川县| 贡嘎县| 蓬溪县|