找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Discrete Dynamical Systems; A Visual Introductio Ralph H. Abraham,Laura Gardini,Christian Mira Book 1997 Springer Science+Business

[復(fù)制鏈接]
樓主: Entangle
21#
發(fā)表于 2025-3-25 04:26:52 | 只看該作者
Chaotic Contact BifurcationsChaotic contact bifurcations involve a chaotic attractor. This is the pinnacle of our subject. Here we proceed with a 1D introduction, and a 2D introduction, before analyzing the exemplary bifurcation sequence.
22#
發(fā)表于 2025-3-25 08:05:44 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:27 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:31 | 只看該作者
Fractal Boundariesrcations, which we have encountered already in Chapter 5, with a sequence of hand drawings. Then we will go on to an exemplary bifurcation sequence with computer graphics, in which the fractal implications of these contact events for the boundaries become clear.
25#
發(fā)表于 2025-3-25 21:16:46 | 只看該作者
Conclusiontractors, basins, critical sets, bifurcations, and so on — may be understood in the 1D context, as we have indicated here and there; but perhaps they are clearer in 2D. Also, the 2D versions may admit a more straightforward generalization to 3D and higher dimensions.
26#
發(fā)表于 2025-3-26 00:57:56 | 只看該作者
Book 1997 books by Heinz-Otto Peigen and his co-workers. Now, the new theory of critical curves developed byMira and his students and Toulouse provide a unique opportunity to explain the basic concepts of the theory of chaos and bifurcations for discete dynamical systems in two-dimensions. The materials in t
27#
發(fā)表于 2025-3-26 07:01:29 | 只看該作者
28#
發(fā)表于 2025-3-26 12:00:12 | 只看該作者
Book 1997systems), cascades (discrete, reversible, dynamical systems), and semi-cascades (discrete, irreversible, dynamical systems). Flows and semi-cascades are the classical systems iuntroduced by Poincare a centry ago, and are the subject of the extensively illustrated book: "Dynamics: The Geometry of Beh
29#
發(fā)表于 2025-3-26 14:17:11 | 只看該作者
30#
發(fā)表于 2025-3-26 20:51:35 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特左旗| 吴忠市| 太康县| 江都市| 津市市| 米泉市| 隆昌县| 泰来县| 乾安县| 佛学| 志丹县| 阿坝县| 内乡县| 榆树市| 共和县| 化州市| 铁力市| 咸阳市| 湘乡市| 公主岭市| 吴江市| 新闻| 措勤县| 大悟县| 阿荣旗| 大余县| 阿克| 佛冈县| 福贡县| 沛县| 卫辉市| 嘉峪关市| 普宁市| 清新县| 固原市| 石河子市| 济阳县| 日喀则市| 阜平县| 灵石县| 乌鲁木齐市|