找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Brain Function; Containing Original Erol Ba?ar Book 1990 Springer-Verlag Berlin Heidelberg 1990 brain.cognition.cortex.electroenc

[復制鏈接]
11#
發(fā)表于 2025-3-23 09:57:50 | 只看該作者
Correlation Dimensions in Various Parts of Cat and Human Brain in Different States,onlinear model (Ba?ar 1980). Later, assuming the EEG to be a chaotic attractor and mentioning the possibilities of applying the Navier-Stokes equation for comparison, we described that the EEG might reflect properties of a strange attractor (Ba?ar 1983; Ba?ar and R?schke 1983).
12#
發(fā)表于 2025-3-23 17:27:34 | 只看該作者
13#
發(fā)表于 2025-3-23 21:09:14 | 只看該作者
Dimensional Analysis of the Waking EEG, been if it had been started under slightly different initial conditions. Chaos may not be the ultimate description for a system’s irregular dynamic. As outlined by R?ssler (1983), more complex structures “beyond chaos” may await discovery.
14#
發(fā)表于 2025-3-24 00:32:12 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:58 | 只看該作者
s with more than two degrees of freedom can generate chaos, becoming unpredictable over a longer time scale. The brain is a nonlinear system par excellence. Accordingly, the concepts of chaotic dynamics have found, in the last five years, an important application in research on compound electrical a
16#
發(fā)表于 2025-3-24 09:11:01 | 只看該作者
https://doi.org/10.1007/978-1-4842-1010-9probability of the immediately underlying output cell (Freeman and Schneider 1982; Gray et al. 1984, 1986). Thus the recording of all such surface potentials, at the spatial frequency of the functional units, makes possible knowledge of the total output of the bulb without having to make massive microelectrode penetrations.
17#
發(fā)表于 2025-3-24 12:53:40 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:46 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:31:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
武陟县| 阳新县| 根河市| 康平县| 象山县| 休宁县| 苗栗县| 扎囊县| 北流市| 根河市| 雷州市| 北票市| 钟山县| 平定县| 紫金县| 大城县| 黄梅县| 开平市| 隆尧县| 昭平县| 开远市| 鸡西市| 江山市| 浏阳市| 余庆县| 凤城市| 平阳县| 太仆寺旗| 和静县| 池州市| 唐海县| 昔阳县| 武威市| 林西县| 宁陕县| 秦皇岛市| 阳曲县| 玉门市| 梅州市| 宜黄县| 伊川县|