找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos for Engineers; Theory, Applications Tomasz Kapitaniak Book 2000Latest edition Springer-Verlag Berlin Heidelberg 2000 Analysis.Chaos.N

[復(fù)制鏈接]
樓主: 從未迷惑
11#
發(fā)表于 2025-3-23 13:46:53 | 只看該作者
Book 2000Latest editionitaniak, probably one of the most outstanding scientists working on engineering applications of Nonlinear Dynamics and Chaos today. A more careful reading reinforced this first impression....The presentation is lucid and user friendly with theory, examples, and exercises."
12#
發(fā)表于 2025-3-23 17:04:56 | 只看該作者
Tomasz KapitaniakA small but comprehensive text, which summarizes relevant mathematical background and describes applications of interest to engineers and applied scientists.Includes supplementary material:
13#
發(fā)表于 2025-3-23 19:46:22 | 只看該作者
14#
發(fā)表于 2025-3-23 23:19:22 | 只看該作者
https://doi.org/10.1007/978-3-642-57143-5Analysis; Chaos; Natur; communication; model; nonlinear dynamics; complexity
15#
發(fā)表于 2025-3-24 03:13:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:31:45 | 只看該作者
Discrete Dynamical Systems,ase of the Poincaré map introduced in the previous chapter. The dynamics of discrete dynamical systems is usually simple enough to be explained in detail. We use these systems to describe the main phenomena of nonlinear dynamics.
17#
發(fā)表于 2025-3-24 10:52:41 | 只看該作者
Fractals,oduce basic examples and properties of fractal sets starting with a classical example of the Cantor set and introduce different definitions of its dimension. Later we discuss the application of the fractal concept to dynamics and show that it is very useful in the description of strange chaotic attractors.
18#
發(fā)表于 2025-3-24 16:44:31 | 只看該作者
Routes to Chaos,s during the transition from periodic to chaotic states. The mechanism of the transition to chaos is of fundamental importance for understanding the phenomenon of chaotic behaviour. There are three main routes to chaos which can be observed in nonlinear oscillators.
19#
發(fā)表于 2025-3-24 19:52:42 | 只看該作者
20#
發(fā)表于 2025-3-24 23:41:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善右旗| 柳河县| 满城县| 南召县| 华池县| 凉山| 乃东县| 丹江口市| 勐海县| 弥勒县| 鄂温| 嵊泗县| 桐梓县| 自治县| 景洪市| 双鸭山市| 宜兰县| 普定县| 康马县| 稷山县| 昭觉县| 田林县| 石狮市| 微博| 澄迈县| 宁德市| 麻阳| 荆门市| 阜城县| 郁南县| 扎鲁特旗| 板桥市| 宝山区| 福泉市| 广饶县| 甘谷县| 建平县| 泗水县| 乌什县| 尤溪县| 祥云县|