找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos Detection and Predictability; Charalampos (Haris) Skokos,Georg A. Gottwald,Jacqu Book 2016 Springer-Verlag Berlin Heidelberg 2016 Ch

[復(fù)制鏈接]
樓主: 手鐲
21#
發(fā)表于 2025-3-25 03:36:16 | 只看該作者
Der Polyneuropathie auf der Spur,f these methods in studying the global dynamics of a system, as well as their ability to identify regular motion on low dimensional tori. Finally we discuss several applications of these indices to problems originating from different scientific fields like celestial mechanics, galactic dynamics, accelerator physics and condensed matter physics.
22#
發(fā)表于 2025-3-25 11:06:33 | 只看該作者
23#
發(fā)表于 2025-3-25 14:54:31 | 只看該作者
The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detectif these methods in studying the global dynamics of a system, as well as their ability to identify regular motion on low dimensional tori. Finally we discuss several applications of these indices to problems originating from different scientific fields like celestial mechanics, galactic dynamics, accelerator physics and condensed matter physics.
24#
發(fā)表于 2025-3-25 15:53:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:51:37 | 只看該作者
26#
發(fā)表于 2025-3-26 04:11:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:30:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:30 | 只看該作者
Polyneuropathie mit Erfolg behandeln, series and illustrate its features by the (iterated) Hénon map, the hyper chaotic folded-towel map, the well known chaotic Lorenz-63 system, and a time continuous 6-dimensional Lorenz-96 model. These examples show that the largest Lyapunov exponent from a time series of a low-dimensional chaotic sy
29#
發(fā)表于 2025-3-26 16:12:13 | 只看該作者
30#
發(fā)表于 2025-3-26 18:57:24 | 只看該作者
0075-8450 eoretical and computational aspects of traditional methods to calculate Lyapunov exponents, as well as of modern techniques like the Fast (FLI), the Orthogonal (OFLI) a978-3-662-48408-1978-3-662-48410-4Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 20:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普定县| 桂阳县| 抚宁县| 淮滨县| 镇远县| 中西区| 玉龙| 措美县| 高密市| 长乐市| 安塞县| 信丰县| 中卫市| 商城县| 崇信县| 蒙城县| 钟山县| 灵丘县| 浦北县| 康乐县| 浦城县| 宁明县| 庆城县| 南汇区| 岑溪市| 台中市| 突泉县| 沂南县| 古蔺县| 佛坪县| 北辰区| 临猗县| 怀远县| 崇仁县| 永城市| 南阳市| 黔江区| 广德县| 新安县| 荆门市| 孝感市|