找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos Control; Theory and Applicati Guanrong Chen,Xinghuo Yu Book 2003 Springer-Verlag Berlin Heidelberg 2003 Chaos Anti-Control.Chaos Sync

[復制鏈接]
樓主: Bush
31#
發(fā)表于 2025-3-26 21:30:27 | 只看該作者
32#
發(fā)表于 2025-3-27 05:10:23 | 只看該作者
Control of Chaos Statistics for Optimization of DS-CDMA Systems,tion quality for several scenarios. We here briefly review the main steps in this derivation and report the corresponding theoretical prediction. In particular we show that the use of the so-called statistical approach to the study of a chaotic dynamical system allows to characterize and control the
33#
發(fā)表于 2025-3-27 08:43:28 | 只看該作者
34#
發(fā)表于 2025-3-27 13:26:46 | 只看該作者
Control of Chaos Statistics for the Generation of Timing Signals with Improved EMC,als widely employed in digital circuits, or the control pulse-trains used in switching power converters. We here focus on the methodologies where electromagnetic compatibility is enhanced by means of . rather than relying on shields and filtered cables and connectors. More specifically, the introduc
35#
發(fā)表于 2025-3-27 16:41:15 | 只看該作者
Odd Number Limitation in Delayed Feedback Control,inal DFC restricts the application to a special class of chaotic systems. So far, various methods have been developed to overcome the limitation. In this chapter, we show their key concepts to solve the problem.
36#
發(fā)表于 2025-3-27 19:06:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:49:37 | 只看該作者
Neural Network Design for Chaos Synchronization,rrent neural networks and inverse optimal control for nonlinear systems. On the basis of the last technique, chaos is first produced by a stable recurrent neural network; an adaptive recurrent neural controller is then developed for chaos synchronization.
38#
發(fā)表于 2025-3-28 05:31:34 | 只看該作者
Chaotification via Feedback: The Discrete Case,c, or to enhance the existing chaos of a chaotic system, via feedback control techniques. Only the discrete case is discussed in detail. A basic and yet “universal” approach to discrete chaotification is described, with a simple example worked out in a step-by-step fashion for illustration.
39#
發(fā)表于 2025-3-28 08:44:57 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 13:12
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丰宁| 克拉玛依市| 元谋县| 新蔡县| 望都县| 凌海市| 应用必备| 同仁县| 龙州县| 嘉善县| 福州市| 忻城县| 永嘉县| 万宁市| 大同县| 隆回县| 墨脱县| 依安县| 呼图壁县| 宁远县| 宜川县| 舒城县| 景洪市| 清徐县| 新河县| 文昌市| 南川市| 合作市| 扬州市| 沅陵县| 抚远县| 顺昌县| 临高县| 宁国市| 天津市| 晋州市| 木兰县| 丰城市| 桦甸市| 广东省| 达拉特旗|